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ABSTRACT: As HLA federations are deployed in more and more distributed environments there is an increasing need 
to be able to operate in a less than perfect world. A number of extensions that adds fault tolerance support to HLA have 
been suggested and accepted as a part of HLA Evolved. Two types of faults are introduced: "federate lost" as seen from 
the federation and "connection lost" as seen from the federate. Some of the potential and limitations of this approach to 
fault tolerance are described in this paper.  

To handle fault tolerance in a federation it must be addressed early in the Federation Development Process (FEDEP). 
During federation agreement and throughout the federation and federate design and implementation the level of fault 
tolerance must also be related to the purpose and goal of the federation. For example, it is necessary to understand 
what constitutes a valid federation when federates are lost, what the procedures are to determine this and how to 
recover. Fault tolerant requirements may also vary between training and analysis federations. 

A number of design patterns for fault tolerance in federations are presented in the paper, for example, the required 
federation subset, the optional federation, the fault monitoring federate, the reoccurring federate, the spontaneous 
federation the fail-over federate and the fail-over RTI. 

For federate a number of design patterns for different operations can be implemented to support fault tolerance. Some 
of these are fault tolerant updates, regular reconnection attempts, fault tolerant save and failure monitoring.  

The resynchronization of a federation is an important issue. Some aspects of rejoin are discussed. The approach for 
resynchronization needs to consider both technical and scenario management aspects to be able to resynchronize at a 
relevant and convenient time.  

 

1. Introduction 
 
1.1 Faults and HLA 

Any successful new technology will experience a 
transition period when it goes from the well controlled 
environment of the R&D laboratory to real world 
deployment and usage [1]. This means both a gradual 
change in the environment where the technology will 
be used and in the requirements it will have to meet.  

The HLA standard for simulation interoperability is yet 
another example of this. Early federations included a 
handful of systems in a resourceful laboratory with 
experienced staff. We now see deployment underway 
of HLA federations encompassing hundreds of systems 
across continents and using systems with real life 

limitations when it comes to reliability, bandwidth, 
staff, etc. 

1.2 Faults in the HLA federation 

Faults can occur at several levels in an HLA federation. 
Once the fault has been detected, there are several 
different approaches for recovery. Depending on type 
of fault and on what level it occurred, the federation 
can either try to recover or continue with degraded 
performance. Sometimes the fault will cause the 
federation to completely stop operating.  Degradation 
or loss of service may be signaled to a higher level 
directly or indirectly.  

The following picture shows where faults can occur in 
an HLA federation: 



 
Figure 1: Levels where faults can occur 

Level 1: Communications (Network etc). Typical 
faults occur when a cable is disconnected or a path 
between two hosts is no longer available. The fault 
may be resolved at this level by rerouting the packets 

Level 2: Computer hardware. Typical faults in 
hardware may be related to power supplies and hard 
drives but other components may also fail. Some of 
this can be compensated by redundancy, for example 
by doubling the power supply or using RAID storage.  

Level 3: Operating system. Typical faults are system 
freeze or malfunctioning components such as drivers or 
processes.  

Level 4: RTI components. RTI components may 
crash or become corrupt. The latter may be the more 
difficult problem to troubleshoot. 

Level 5: Federate. Federates may crash or degrade. 
One particular problem is when a federate hangs or 
gets stuck in debugger. A federate producing 
inaccurate data is not considered a fault in this context. 

Level 6: Federation. This level may experience faults 
when each federate works technically well but does not 
follow the federation agreement. The federates may not 
format or interpret data as agreed or produce data at the 
wrong rate. This is a well-known issue for anybody 
who has done any real-life federation integration. 

Level 7: Users. Users can trigger any fault on lower 
levels. They can also unexpectedly do technically clean 
shutdowns of federates at the wrong time. On the other 
hand, it is sometimes possible to compensate for faults 
at lower level by handling simulation tasks manually.  

1.3 Scope of the fault tolerance 

HLA is a standard that mainly specifies the interface 
and interplay between the RTI and the federate, it is 
not an implementation. Fault tolerance in the HLA 
standard only addresses this interface. A federation 
manager that wants to ensure high availability of his 
federation may want to address all of the above levels. 

2. Fault Tolerance in HLA Evolved 
The current version of HLA is formally called IEEE 
1516-2000 [2]. HLA Evolved is the working name for 
the next version of HLA IEEE 1516 that is expected to 
be completed in 2005 or early 2006. During the first 
comment round a set of functions that handle fault 
tolerance have been suggested and accepted. This is an 
overview of these additions. A number of alternate 
approaches have been examined and rejected [3]. 

Some engineering support also exists for the current 
approach. One of the examples is the federate RTIperf 
[4] for HLA IEEE 1516-2000 (source code publicly 
available) that makes educated guesses when general 
faults occur and applies some of these approaches. The 
problem is that there is no obvious way to understand 
this from the source code and there is no guarantee that 
this code would work with another RTI 
implementation than the one used in this experiment 
(pRTI 1516).  

2.1 Design criteria 

The most important design criteria used for the fault 
tolerance additions are: 

Preserve classic HLA Compliance. We don’t want to 
redefine HLA as it is known today. 

Well-defined federations. This concept should be 
preserved. A federate is either joined or not. This is 
necessary for federation-wide coordinated operations 
like time management. 

Minimal impact on federates. Especially for federates 
that do not want to implement fault tolerance the 
impact of the additions should be minimal. 

Modest implementation effort. It should be possible 
to implement it in RTIs and federates/federations with 
minimal effort.  

2.2 Life cycle of federates experiencing faults 

A federate may go through the following life cycle 
with respect to a fault: 

 
Figure 2: Federate life cycle from a fault perspective 

1. Not (yet) connected to the RTI. Initially the 
candidate federate will not be connected to the RTI. It 
will now attempt to connect using the Connect call 



which is a new function introduced in HLA Evolved. 
Faults during this phase are not handled through the 
HLA Fault tolerance although the Connect call will 
clearly indicate whether it completed successfully or 
not. 

2. Connected. If the Connect is successful the system 
is now connected to the RTI and can Create a 
FederationExecution and Join. Faults are handled 
through the HLA fault tolerance. 

3. Joined. If the Join is successful the federate can now 
participate in the federation. Faults will still be handled 
through the HLA fault tolerance. 

4. Connected (after Resign). After resigning the 
federate is still connected and faults will still be 
handled through the HLA fault tolerance. 

5. Disconnected (After Disconnect). After 
disconnecting from the RTI the federate is back to step 
1. Disconnect is also a new call introduced in HLA 
Evolved. 

6. Disconnected (After fault) If a fault occurs the 
federate is no longer considered a joined or connected 
federate by the RTI. The federate is now back to step 1. 

For a description of the life cycle of a federation when 
a fault occurs, see section 6. 

2.3 Fault definitions 

In HLA Evolved a fault is defined as “a problem that 
occurs in the federation or its environment that 
prevents the entire federation from interoperating in an 
HLA compliant manner”. There are two types of faults: 

 
Figure 3: Types of faults 

Federate Lost occurs when a federate has been 
unexpectedly lost from a federation as a result of a 
fault. This fault is signaled using the MOM interaction 
“HLAreportFederateLost” to any federate in the 
remaining federation that subscribes to this interaction. 
The MOM interaction also provides information about 
the last known-good timestamp to which the lost 
federate was granted. This value is provided on a best-
effort basis and may not represent the highest time 
value to which the federate was actually granted. 

Connection Lost occurs when a federation has been 
unexpectedly lost from a federate as a result of a fault. 
This fault is signaled through a callback from the RTI 
which in C++ and Java is implemented as a call to the 
FederateAmbassador. The federate then enters the Not 
Connected state. The federate now needs to do a 
Connect to the RTI again otherwise a Not Connected 
exception will be thrown when an RTI call is made. 
Note that this callback is done to a federate 
experiencing a fault. It is done on a best-effort basis 
and may or may not succeed since this call may be 
done by an LRC that may have lost contact with the 
rest of the federation or is trying to execute on a 
computer without power. 

Why are two different mechanisms used for signaling? 
It is assumed that not every federate is interested in 
reports about other failing federates. Those who do 
would like to get it in a context of what other federates 
that are available to be able to assess the situation. This 
is why it was added to the MOM. 

Losing the connection to the federation on the other 
hand is something that most federates may want to be 
aware of. A federate may choose not to be fault 
tolerant and ignore this callback (which would be the 
default behavior when using a C++ or Java 
nullFederateAmbassador). This would, however, result 
in exceptions in later RTI calls. 

2.4 Actions taken by the RTI 

When a federate has been lost the RTI is responsible 
for reporting this and then do a resign on behalf of the 
lost federate using the “Automatic Resign Directive”. 
This directive is specified in the FOM and can also be 
accessed using support services. The MOM 
information and relevant advisories are updated as with 
a usual resign action. This also means that all 
federation-wide synchronized operations like time-
management are recovered. If for example all federates 
are waiting for a specific federate to advance time and 
that federate has crashed this would otherwise have 
prevented the entire federation from advancing. The 
final result of the resign and recovery will be a reduced 
but HLA compliant federation. 

A particularly interesting situation occurs when a 
federation is split by a fault into two groups of 
federates both of which are potentially HLA compliant. 
Only one of them may be considered HLA compliant 
by the RTI. All RTI implementations are required to 
define a mechanism for making this decision, which is 
usually not a problem for RTIs with a Central RTI 
Component. While it would have been powerful to 
form two new federations that can later on be re-
synchronized the fundamental problems of this are 
intriguing. 



2.5 Implications for RTI implementations 

The descriptions above say nothing about how the fault 
tolerance should be implemented only how faults have 
to be signaled. It can be expected that different RTI 
implementations will have different performance when 
it comes to fault detection. Different RTI 
implementations may also want to do different trade-
offs between performance goals such as throughput, 
latency, fault tolerance and bandwidth utilization. Two 
obvious candidates for detecting faults are the 
following: 

Closed TCP socket. True multiprocessing operating 
systems will in many cases detect crashing processes 
and clean up after them. This means that they will 
explicitly close any open communications sockets. The 
system on the other end of the link will be notified. If 
any RTI component detects that a link to another 
federate was explicitly but unexpectedly closed it can 
be assumed that the remote federate crashed. When it 
comes to bandwidth and CPU utilization this detection 
method costs close to nothing. It is however limited to 
the detection of well-handled program crashes only. 

Polling. RTI components may poll each other at 
regular intervals. If no answer is received within a 
specific time frame the other component may be 
considered lost. This type of detection may not be 
100% accurate under varying load and latency 
conditions and also requires some bandwidth and 
processing resources. It does, on the other hand, detect 
a wide range of faults. 

Other detection methods also exist. For a shared 
memory implementation for example a corrupt 
communication area may trigger a fault. 

When verifying an RTI for fault tolerance it may be 
necessary to know how to trigger a fault that can be 
detected by the specific RTI implementation so that the 
behavior can be verified.  

2.6 Scope of the Fault Tolerance additions 

Are these fault tolerance additions the definite solution 
to all problems with faults in an HLA federation? The 
answer is clearly no. 

While these additions gives us a well-defined way of 
signaling and handling faults there will still be cases 
where the faults are so large and frequent that a 
federation cannot execute in such a manner that the 
federation goals are achieved. 

There are also faults that cannot be handled by these 
additions as can be seen from the following picture: 

 
Figure 4: Different degrees of faults 

In the bottom part (green) are faults that occur on a low 
level, for example network failures that can be 
automatically solved through rerouting. These faults 
are invisible to higher levels, for example current and 
previous HLA standards. 

In the middle part (yellow) are faults where a subset of 
a federation or an ex-federate simulation is still 
operational. This area is addressed by the current 
additions. 

In the upper part (red) are faults where the HLA 
infrastructure and federates are no longer operational. 
This may happen during a training exercise due to 
power loss. This will have to be handled by falling 
back to manual procedures. 

This is a first broad approach the problems with faults. 
As we gain more experience from building fault 
tolerant federations the functionality can be expected to 
develop in future versions of HLA. 

3. Applying fault tolerance to a federation 
Fault tolerance at the HLA level needs to be designed 
into the federation to be successful. It needs to be 
aligned with the goal and budget of the federation. This 
additional feature will come at a cost but as always it 
will be substantially less costly if designed and added 
at an early stage. 

3.1 Fault tolerance throughout FEDEP [5] 

In the purpose and goals of the federation, the fault 
tolerance aspects are often implicit.  Depending on the 
requirements, the federation can be designed to be 
more or less fault tolerant. It is however very important 
that the issue is raised and a well-informed decision is 
made early in the federation development process. 
Since fault tolerance can be a significant cost driver it 
should also be considered in the budget planning 
process.  

During “Conceptual Model Development” step the 
conceptual analysis and the scenario should also 



address to what degree different model components are 
required or optional. This information is then used in 
the “Federation design” step where for example the 
design patterns described later in this paper can be 
used. 

The federation agreement should specify at least 

• What degree of degradation is acceptable to the 
federation. 

• How and by whom this is evaluated and what 
actions to take at each level of degradation. 

• What type of fault tolerance that should be 
implemented in each federate, including any 
interaction between federates. 

• Standard design patterns to use for the fault 
handling. 

During the “Test and integration” step procedures to 
invoke or simulate failures should be determined and 
implemented. 

During the “Federation Execution” step faults some 
faults may be fully handled by the federation but it is 
likely that major faults may require manual 
intervention and in some cases dynamic adjustments to 
the scenario. All faults may need to be logged. 

During the “Analysis and evaluation of results” step it 
is necessary to take into account any faults that 
occurred. 

3.2 Analysis versus training 

When evaluating what degree of fault tolerance that 
should be implemented in a federation the approach 
may differ between analysis and training federations: 

Analytical federations may need a very detailed 
tracking of faults that occurred during the federation 
execution. A thorough analysis may be necessary do 
determine to what degree the output is useful. If the 
output is considered useless if any major degradation 
has occurred it may be of greater importance to track 
the faults than to compensate for them. 

Training federations on the other hand may want to 
focus on the capability to provide an effective training 
experience even though systems may at times be at 
fault. It may be more important to provide capabilities 
to execute a degraded federation than to log the faults 
for future analysis. 

4. Design Patterns for Fault Tolerant 
Federations 
A number of design patterns have been developed both 
on the federation level and for federate 
implementations. They are described together with the 
problem and context when they can be used and a 

number of consequences that need to be evaluated for 
each case before applying it. 

4.1 The required federation subset 

 
Figure 5: The required federation subset pattern 

Problem and context: A federation cannot reach its 
goals if a required subset of the federates is not 
available. 

Design pattern: The federation will not start running 
unless the required federates are joined. It will stop 
executing if any required federate disappears. This 
monitoring can be controlled manually or using the 
pattern “The fault monitoring federate” below. 

Consequences: Need to handle the situation where the 
federation unexpectedly stops running.  

4.2 The optional federation  

 
Figure 6: The optional federation pattern 

Problem and context: An important simulation, for 
example a trainer, needs to keep executing, no matter if 
the federation is available or not. The stand-alone 
system may be more important than the federation. 

Design pattern: The federate performs regular checks 
to decide whether a federation is available. If so it will 
join and interoperate. If not the federate will keep 
running but it will not make any RTI calls. 

Consequences: Some computing resources used for 
the reconnection attempts. Need to consider 
resynchronization. 



4.3 The reoccurring federate 

 
Figure 7: The reoccurring federate pattern 

Problem and context: A federation is not always 
available but when it is it needs the contribution of a 
specific federate that is available to a larger extent. 
Alternatively a federate wants to participate in a 
particular federation. The federate may be difficult to 
start for example if it is located at another site. 

Design pattern: The federate tries to join the 
federation at regular intervals. 

Consequences: Some computing resources used for 
the reconnection attempts. A mechanism for preventing 
the federation from accepting the new member may be 
required. 

4.4 The fault monitoring federate 

 
Figure 8: The fault monitoring federate pattern 

Problem and context: Specific actions need to be 
taken whenever the members of a federation changes. 

Design pattern: The monitoring federate subscribes to 
MOM data about joining and lost federates and take 
appropriate actions. This may include signaling to 
operators or to other federates to take specific actions. 

Consequences: Other federates need to understand 
what to do and when. It is necessary to communicate to 
operators what actions that are done automatically and 
what needs to be handled manually. 

4.5 The spontaneous federation. 

 
Figure 9: The spontaneous federation pattern 

Problem and context: A federation is valuable even 
though no centralized federation management takes 
place or no formal federation agreement has been made 
except for sharing a FOM. 

Design pattern: Whenever there are enough 
participants a federation will occur. Each federate is 
responsible for monitoring this from their own point of 
view. Lost federates may not be considered a major 
problem. 

Consequences: Need to determine when a federation is 
wanted or not. Need to establish a mechanism for 
locating a common RTI. 

4.6 The fail-over federate 

 
Figure 10: The fail-over federate pattern 

Problem and context: The functionality of a specific 
model is essential to a federation. The environment has 
a high fault-rate or it is desirable to achieve very high 
availability of the federation. 

Design pattern: A stand-by federate monitors the 
progress of another federate with overlapping 
functionality. When the other federate is lost the fail-
over federate can take over. The fail-over federate may 
provide exactly the same model or a model with a 
different resolution.  

Consequences: The exact time for the fail-over event 
may not be exact so there may be some catch-up time 
before the full functionality of the federation is 



restored. Some loss of model availability and accuracy 
during fail-over can be expected. 

4.7 The fail-over RTI 

 
Figure 11: The fail-over RTI pattern 

Problem and context: There is a high fault-rate in the 
environment or the RTI or it is desirable to achieve 
very high availability of the federation. 

Design pattern: Federates have a prioritized list of 
RTIs. When one RTI disappears they connect to 
another one. 

Consequences: Need to provide alternate RTIs. There 
is a risk that different federates may fail over to 
different RTIs for topological reasons.  

5. Design Patterns for Fault Tolerant 
Federates 
To make it possible to implement a fault tolerant 
federation according to the above it is also necessary to 
look at each federate and make necessary 
modifications. A number of patterns for the federate 
implementation are described below. 

5.1 Signaling errors to the user 

Problem and context: Many faults, for example 
hardware failures, can only be corrected manually 
outside of the federation. The users may however 
experience difficulties locating the exact reason for the 
fault. 

Design pattern: Both the “Federate Lost” MOM 
interaction and the “Disconnected” callback provide 
human readable descriptions of the fault. These should 
be clearly advertised to the user to facilitate correction 
of the fault 

5.2 Fault tolerant RTI calls (updates, etc) 

Problem and context: It is not acceptable for the 
federate to crash when the connection to the RTI is 
lost. It may keep running anyway and potentially 
reconnect to the federation later. 

Design pattern: Before sending updates the federate 
check if it is connected.  

Consequences: It may be combined with the next 
pattern. 

5.3 Regular reconnection attempts 

Problem and context: A federate that has lost its 
connection to the federation needs to reconnect. 

Design pattern: The federate tries to reconnect at 
regular intervals. 

Consequences: Too frequent reconnection attempts 
may slow down the federate since the reconnection 
may take some time to time out.  

5.4 Fault tolerant save 

Problem and context: Some federates may crash or 
hang during save. This may cause the save to terminate 
with an exception. 

Design pattern: The federate initiates a save. Some 
federates may be lost which will result in an exception. 
Save is retried over and over until it succeeds. 

Consequences: Only the federates that survived the 
save attempts were actually saved. If a federate hangs it 
may need to be killed manually but after that the 
federation will save. If the initiating federate crashes 
no save will take place. 

5.5 Failure monitoring 

Problem and context: A federate need to be up to date 
about the status of a specific federate and monitor 
when it joins, resigns or crashes.  

Design pattern: The monitoring federate subscribes to 
the MOM federate object class and monitors it for the 
other federate. It also subscribes to the FederateLost 
MOM interaction. 

6. Further Implications for Fault Tolerant 
Federations 
After recovering after a fault a federate will want to 
rejoin the federation. While it is technically possible to 
rejoin a federation at any time there are several other 
challenges associated with this particularly related to 
the scenario. Several of these problems are similar to 
the ones of “late joining federate” situation. 

6.1 Life cycle of a fault in a federation 

 
Figure 12: Federation fault handling and degradation 



After the fault occurs the RTI may detect the fault and 
signal it to the federates. During the time this takes the 
degradation is not well controlled. 

The federation can now start handling the loss, for 
example by removing objects, adjusting ownership or 
activating stand-by functionality. How the loss 
handling is done should be covered in the federation 
agreement. After this is completed the federation 
executes with a well controlled degradation.  

We now assume that the fault is handled and the 
federate wants to rejoin. After the federate has 
completed the Join and the exchange of information 
could in principle start again.  

In most real cases however, a resynchronization has to 
take place. The returning federate needs to go through 
configuration and re-initialization to prepare itself to 
re-enter a federation. This can be particularly difficult 
if the rest of the federation is continuously executing a 
scenario. 

Furthermore, a federate might not be allowed to re-
enter a scenario at any given time. Due to the current 
state of the federation and scenario, a federate might 
have to wait until the rest of the federation (the other 
federates) allows it. 

Design Patterns to handle these situations are not 
limited to federates joining after a fault has occurred. 
The normal execution of a federation might allow late-
joining federates or federates that leave the federation 
and rejoin later. Common for all these design patterns 
are that they are part of the federation agreement and 
not implemented as part of the HLA standard. 

7 Conclusions 
With the fault tolerant additions to HLA Evolved it is 
finally possible to develop fault tolerant HLA 
federations in a standardized way. While these 
additions will not compensate for all types of faults 
that can occur during a federation execution they still 
make it possible to reach new levels of fault tolerance. 

Since the standard only specifies the API for the fault 
tolerance, not the implementation, we can expect RTIs 
from different sources to start competing with regards 
to their fault tolerance capabilities. 

A federation and its federates will need to be modified 
to take full advantage of the fault tolerance additions. 
This paper provides a number of design patterns for 
this. 

Fault tolerance has been lagging behind in the HLA 
standard. The new additions will open new possibilities 
and applications for HLA technology. As the practical 
experiences from developing fault tolerant federations 
expand during the coming years we may also see 

further fault tolerance additions being made to future 
versions of HLA.  
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