
Developing Fault Tolerant Federations using HLA Evolved

Björn Möller
Mikael Karlsson
Björn Löfstrand

Pitch Technologies
Nygatan 35

SE-582 19 Linköping, Sweden
+46 13 13 45 45

bjorn.moller@pitch.se
mikael.karlsson@pitch.se
bjorn.lofstrand@pitch.se

Keywords:

HLA Evolved, RTI, Fault Tolerance, Design Patterns, Federation Management, FEDEP

ABSTRACT: As HLA federations are deployed in more and more distributed environments there is an increasing need
to be able to operate in a less than perfect world. A number of extensions that adds fault tolerance support to HLA have
been suggested and accepted as a part of HLA Evolved. Two types of faults are introduced: "federate lost" as seen from
the federation and "connection lost" as seen from the federate. Some of the potential and limitations of this approach to
fault tolerance are described in this paper.

To handle fault tolerance in a federation it must be addressed early in the Federation Development Process (FEDEP).
During federation agreement and throughout the federation and federate design and implementation the level of fault
tolerance must also be related to the purpose and goal of the federation. For example, it is necessary to understand
what constitutes a valid federation when federates are lost, what the procedures are to determine this and how to
recover. Fault tolerant requirements may also vary between training and analysis federations.

A number of design patterns for fault tolerance in federations are presented in the paper, for example, the required
federation subset, the optional federation, the fault monitoring federate, the reoccurring federate, the spontaneous
federation the fail-over federate and the fail-over RTI.

For federate a number of design patterns for different operations can be implemented to support fault tolerance. Some
of these are fault tolerant updates, regular reconnection attempts, fault tolerant save and failure monitoring.

The resynchronization of a federation is an important issue. Some aspects of rejoin are discussed. The approach for
resynchronization needs to consider both technical and scenario management aspects to be able to resynchronize at a
relevant and convenient time.

1. Introduction

1.1 Faults and HLA

Any successful new technology will experience a
transition period when it goes from the well controlled
environment of the R&D laboratory to real world
deployment and usage [1]. This means both a gradual
change in the environment where the technology will
be used and in the requirements it will have to meet.

The HLA standard for simulation interoperability is yet
another example of this. Early federations included a
handful of systems in a resourceful laboratory with
experienced staff. We now see deployment underway
of HLA federations encompassing hundreds of systems
across continents and using systems with real life

limitations when it comes to reliability, bandwidth,
staff, etc.

1.2 Faults in the HLA federation

Faults can occur at several levels in an HLA federation.
Once the fault has been detected, there are several
different approaches for recovery. Depending on type
of fault and on what level it occurred, the federation
can either try to recover or continue with degraded
performance. Sometimes the fault will cause the
federation to completely stop operating. Degradation
or loss of service may be signaled to a higher level
directly or indirectly.

The following picture shows where faults can occur in
an HLA federation:

Figure 1: Levels where faults can occur

Level 1: Communications (Network etc). Typical
faults occur when a cable is disconnected or a path
between two hosts is no longer available. The fault
may be resolved at this level by rerouting the packets

Level 2: Computer hardware. Typical faults in
hardware may be related to power supplies and hard
drives but other components may also fail. Some of
this can be compensated by redundancy, for example
by doubling the power supply or using RAID storage.

Level 3: Operating system. Typical faults are system
freeze or malfunctioning components such as drivers or
processes.

Level 4: RTI components. RTI components may
crash or become corrupt. The latter may be the more
difficult problem to troubleshoot.

Level 5: Federate. Federates may crash or degrade.
One particular problem is when a federate hangs or
gets stuck in debugger. A federate producing
inaccurate data is not considered a fault in this context.

Level 6: Federation. This level may experience faults
when each federate works technically well but does not
follow the federation agreement. The federates may not
format or interpret data as agreed or produce data at the
wrong rate. This is a well-known issue for anybody
who has done any real-life federation integration.

Level 7: Users. Users can trigger any fault on lower
levels. They can also unexpectedly do technically clean
shutdowns of federates at the wrong time. On the other
hand, it is sometimes possible to compensate for faults
at lower level by handling simulation tasks manually.

1.3 Scope of the fault tolerance

HLA is a standard that mainly specifies the interface
and interplay between the RTI and the federate, it is
not an implementation. Fault tolerance in the HLA
standard only addresses this interface. A federation
manager that wants to ensure high availability of his
federation may want to address all of the above levels.

2. Fault Tolerance in HLA Evolved
The current version of HLA is formally called IEEE
1516-2000 [2]. HLA Evolved is the working name for
the next version of HLA IEEE 1516 that is expected to
be completed in 2005 or early 2006. During the first
comment round a set of functions that handle fault
tolerance have been suggested and accepted. This is an
overview of these additions. A number of alternate
approaches have been examined and rejected [3].

Some engineering support also exists for the current
approach. One of the examples is the federate RTIperf
[4] for HLA IEEE 1516-2000 (source code publicly
available) that makes educated guesses when general
faults occur and applies some of these approaches. The
problem is that there is no obvious way to understand
this from the source code and there is no guarantee that
this code would work with another RTI
implementation than the one used in this experiment
(pRTI 1516).

2.1 Design criteria

The most important design criteria used for the fault
tolerance additions are:

Preserve classic HLA Compliance. We don’t want to
redefine HLA as it is known today.

Well-defined federations. This concept should be
preserved. A federate is either joined or not. This is
necessary for federation-wide coordinated operations
like time management.

Minimal impact on federates. Especially for federates
that do not want to implement fault tolerance the
impact of the additions should be minimal.

Modest implementation effort. It should be possible
to implement it in RTIs and federates/federations with
minimal effort.

2.2 Life cycle of federates experiencing faults

A federate may go through the following life cycle
with respect to a fault:

Figure 2: Federate life cycle from a fault perspective

1. Not (yet) connected to the RTI. Initially the
candidate federate will not be connected to the RTI. It
will now attempt to connect using the Connect call

which is a new function introduced in HLA Evolved.
Faults during this phase are not handled through the
HLA Fault tolerance although the Connect call will
clearly indicate whether it completed successfully or
not.

2. Connected. If the Connect is successful the system
is now connected to the RTI and can Create a
FederationExecution and Join. Faults are handled
through the HLA fault tolerance.

3. Joined. If the Join is successful the federate can now
participate in the federation. Faults will still be handled
through the HLA fault tolerance.

4. Connected (after Resign). After resigning the
federate is still connected and faults will still be
handled through the HLA fault tolerance.

5. Disconnected (After Disconnect). After
disconnecting from the RTI the federate is back to step
1. Disconnect is also a new call introduced in HLA
Evolved.

6. Disconnected (After fault) If a fault occurs the
federate is no longer considered a joined or connected
federate by the RTI. The federate is now back to step 1.

For a description of the life cycle of a federation when
a fault occurs, see section 6.

2.3 Fault definitions

In HLA Evolved a fault is defined as “a problem that
occurs in the federation or its environment that
prevents the entire federation from interoperating in an
HLA compliant manner”. There are two types of faults:

Figure 3: Types of faults

Federate Lost occurs when a federate has been
unexpectedly lost from a federation as a result of a
fault. This fault is signaled using the MOM interaction
“HLAreportFederateLost” to any federate in the
remaining federation that subscribes to this interaction.
The MOM interaction also provides information about
the last known-good timestamp to which the lost
federate was granted. This value is provided on a best-
effort basis and may not represent the highest time
value to which the federate was actually granted.

Connection Lost occurs when a federation has been
unexpectedly lost from a federate as a result of a fault.
This fault is signaled through a callback from the RTI
which in C++ and Java is implemented as a call to the
FederateAmbassador. The federate then enters the Not
Connected state. The federate now needs to do a
Connect to the RTI again otherwise a Not Connected
exception will be thrown when an RTI call is made.
Note that this callback is done to a federate
experiencing a fault. It is done on a best-effort basis
and may or may not succeed since this call may be
done by an LRC that may have lost contact with the
rest of the federation or is trying to execute on a
computer without power.

Why are two different mechanisms used for signaling?
It is assumed that not every federate is interested in
reports about other failing federates. Those who do
would like to get it in a context of what other federates
that are available to be able to assess the situation. This
is why it was added to the MOM.

Losing the connection to the federation on the other
hand is something that most federates may want to be
aware of. A federate may choose not to be fault
tolerant and ignore this callback (which would be the
default behavior when using a C++ or Java
nullFederateAmbassador). This would, however, result
in exceptions in later RTI calls.

2.4 Actions taken by the RTI

When a federate has been lost the RTI is responsible
for reporting this and then do a resign on behalf of the
lost federate using the “Automatic Resign Directive”.
This directive is specified in the FOM and can also be
accessed using support services. The MOM
information and relevant advisories are updated as with
a usual resign action. This also means that all
federation-wide synchronized operations like time-
management are recovered. If for example all federates
are waiting for a specific federate to advance time and
that federate has crashed this would otherwise have
prevented the entire federation from advancing. The
final result of the resign and recovery will be a reduced
but HLA compliant federation.

A particularly interesting situation occurs when a
federation is split by a fault into two groups of
federates both of which are potentially HLA compliant.
Only one of them may be considered HLA compliant
by the RTI. All RTI implementations are required to
define a mechanism for making this decision, which is
usually not a problem for RTIs with a Central RTI
Component. While it would have been powerful to
form two new federations that can later on be re-
synchronized the fundamental problems of this are
intriguing.

2.5 Implications for RTI implementations

The descriptions above say nothing about how the fault
tolerance should be implemented only how faults have
to be signaled. It can be expected that different RTI
implementations will have different performance when
it comes to fault detection. Different RTI
implementations may also want to do different trade-
offs between performance goals such as throughput,
latency, fault tolerance and bandwidth utilization. Two
obvious candidates for detecting faults are the
following:

Closed TCP socket. True multiprocessing operating
systems will in many cases detect crashing processes
and clean up after them. This means that they will
explicitly close any open communications sockets. The
system on the other end of the link will be notified. If
any RTI component detects that a link to another
federate was explicitly but unexpectedly closed it can
be assumed that the remote federate crashed. When it
comes to bandwidth and CPU utilization this detection
method costs close to nothing. It is however limited to
the detection of well-handled program crashes only.

Polling. RTI components may poll each other at
regular intervals. If no answer is received within a
specific time frame the other component may be
considered lost. This type of detection may not be
100% accurate under varying load and latency
conditions and also requires some bandwidth and
processing resources. It does, on the other hand, detect
a wide range of faults.

Other detection methods also exist. For a shared
memory implementation for example a corrupt
communication area may trigger a fault.

When verifying an RTI for fault tolerance it may be
necessary to know how to trigger a fault that can be
detected by the specific RTI implementation so that the
behavior can be verified.

2.6 Scope of the Fault Tolerance additions

Are these fault tolerance additions the definite solution
to all problems with faults in an HLA federation? The
answer is clearly no.

While these additions gives us a well-defined way of
signaling and handling faults there will still be cases
where the faults are so large and frequent that a
federation cannot execute in such a manner that the
federation goals are achieved.

There are also faults that cannot be handled by these
additions as can be seen from the following picture:

Figure 4: Different degrees of faults

In the bottom part (green) are faults that occur on a low
level, for example network failures that can be
automatically solved through rerouting. These faults
are invisible to higher levels, for example current and
previous HLA standards.

In the middle part (yellow) are faults where a subset of
a federation or an ex-federate simulation is still
operational. This area is addressed by the current
additions.

In the upper part (red) are faults where the HLA
infrastructure and federates are no longer operational.
This may happen during a training exercise due to
power loss. This will have to be handled by falling
back to manual procedures.

This is a first broad approach the problems with faults.
As we gain more experience from building fault
tolerant federations the functionality can be expected to
develop in future versions of HLA.

3. Applying fault tolerance to a federation
Fault tolerance at the HLA level needs to be designed
into the federation to be successful. It needs to be
aligned with the goal and budget of the federation. This
additional feature will come at a cost but as always it
will be substantially less costly if designed and added
at an early stage.

3.1 Fault tolerance throughout FEDEP [5]

In the purpose and goals of the federation, the fault
tolerance aspects are often implicit. Depending on the
requirements, the federation can be designed to be
more or less fault tolerant. It is however very important
that the issue is raised and a well-informed decision is
made early in the federation development process.
Since fault tolerance can be a significant cost driver it
should also be considered in the budget planning
process.

During “Conceptual Model Development” step the
conceptual analysis and the scenario should also

address to what degree different model components are
required or optional. This information is then used in
the “Federation design” step where for example the
design patterns described later in this paper can be
used.

The federation agreement should specify at least

• What degree of degradation is acceptable to the
federation.

• How and by whom this is evaluated and what
actions to take at each level of degradation.

• What type of fault tolerance that should be
implemented in each federate, including any
interaction between federates.

• Standard design patterns to use for the fault
handling.

During the “Test and integration” step procedures to
invoke or simulate failures should be determined and
implemented.

During the “Federation Execution” step faults some
faults may be fully handled by the federation but it is
likely that major faults may require manual
intervention and in some cases dynamic adjustments to
the scenario. All faults may need to be logged.

During the “Analysis and evaluation of results” step it
is necessary to take into account any faults that
occurred.

3.2 Analysis versus training

When evaluating what degree of fault tolerance that
should be implemented in a federation the approach
may differ between analysis and training federations:

Analytical federations may need a very detailed
tracking of faults that occurred during the federation
execution. A thorough analysis may be necessary do
determine to what degree the output is useful. If the
output is considered useless if any major degradation
has occurred it may be of greater importance to track
the faults than to compensate for them.

Training federations on the other hand may want to
focus on the capability to provide an effective training
experience even though systems may at times be at
fault. It may be more important to provide capabilities
to execute a degraded federation than to log the faults
for future analysis.

4. Design Patterns for Fault Tolerant
Federations
A number of design patterns have been developed both
on the federation level and for federate
implementations. They are described together with the
problem and context when they can be used and a

number of consequences that need to be evaluated for
each case before applying it.

4.1 The required federation subset

Figure 5: The required federation subset pattern

Problem and context: A federation cannot reach its
goals if a required subset of the federates is not
available.

Design pattern: The federation will not start running
unless the required federates are joined. It will stop
executing if any required federate disappears. This
monitoring can be controlled manually or using the
pattern “The fault monitoring federate” below.

Consequences: Need to handle the situation where the
federation unexpectedly stops running.

4.2 The optional federation

Figure 6: The optional federation pattern

Problem and context: An important simulation, for
example a trainer, needs to keep executing, no matter if
the federation is available or not. The stand-alone
system may be more important than the federation.

Design pattern: The federate performs regular checks
to decide whether a federation is available. If so it will
join and interoperate. If not the federate will keep
running but it will not make any RTI calls.

Consequences: Some computing resources used for
the reconnection attempts. Need to consider
resynchronization.

4.3 The reoccurring federate

Figure 7: The reoccurring federate pattern

Problem and context: A federation is not always
available but when it is it needs the contribution of a
specific federate that is available to a larger extent.
Alternatively a federate wants to participate in a
particular federation. The federate may be difficult to
start for example if it is located at another site.

Design pattern: The federate tries to join the
federation at regular intervals.

Consequences: Some computing resources used for
the reconnection attempts. A mechanism for preventing
the federation from accepting the new member may be
required.

4.4 The fault monitoring federate

Figure 8: The fault monitoring federate pattern

Problem and context: Specific actions need to be
taken whenever the members of a federation changes.

Design pattern: The monitoring federate subscribes to
MOM data about joining and lost federates and take
appropriate actions. This may include signaling to
operators or to other federates to take specific actions.

Consequences: Other federates need to understand
what to do and when. It is necessary to communicate to
operators what actions that are done automatically and
what needs to be handled manually.

4.5 The spontaneous federation.

Figure 9: The spontaneous federation pattern

Problem and context: A federation is valuable even
though no centralized federation management takes
place or no formal federation agreement has been made
except for sharing a FOM.

Design pattern: Whenever there are enough
participants a federation will occur. Each federate is
responsible for monitoring this from their own point of
view. Lost federates may not be considered a major
problem.

Consequences: Need to determine when a federation is
wanted or not. Need to establish a mechanism for
locating a common RTI.

4.6 The fail-over federate

Figure 10: The fail-over federate pattern

Problem and context: The functionality of a specific
model is essential to a federation. The environment has
a high fault-rate or it is desirable to achieve very high
availability of the federation.

Design pattern: A stand-by federate monitors the
progress of another federate with overlapping
functionality. When the other federate is lost the fail-
over federate can take over. The fail-over federate may
provide exactly the same model or a model with a
different resolution.

Consequences: The exact time for the fail-over event
may not be exact so there may be some catch-up time
before the full functionality of the federation is

restored. Some loss of model availability and accuracy
during fail-over can be expected.

4.7 The fail-over RTI

Figure 11: The fail-over RTI pattern

Problem and context: There is a high fault-rate in the
environment or the RTI or it is desirable to achieve
very high availability of the federation.

Design pattern: Federates have a prioritized list of
RTIs. When one RTI disappears they connect to
another one.

Consequences: Need to provide alternate RTIs. There
is a risk that different federates may fail over to
different RTIs for topological reasons.

5. Design Patterns for Fault Tolerant
Federates
To make it possible to implement a fault tolerant
federation according to the above it is also necessary to
look at each federate and make necessary
modifications. A number of patterns for the federate
implementation are described below.

5.1 Signaling errors to the user

Problem and context: Many faults, for example
hardware failures, can only be corrected manually
outside of the federation. The users may however
experience difficulties locating the exact reason for the
fault.

Design pattern: Both the “Federate Lost” MOM
interaction and the “Disconnected” callback provide
human readable descriptions of the fault. These should
be clearly advertised to the user to facilitate correction
of the fault

5.2 Fault tolerant RTI calls (updates, etc)

Problem and context: It is not acceptable for the
federate to crash when the connection to the RTI is
lost. It may keep running anyway and potentially
reconnect to the federation later.

Design pattern: Before sending updates the federate
check if it is connected.

Consequences: It may be combined with the next
pattern.

5.3 Regular reconnection attempts

Problem and context: A federate that has lost its
connection to the federation needs to reconnect.

Design pattern: The federate tries to reconnect at
regular intervals.

Consequences: Too frequent reconnection attempts
may slow down the federate since the reconnection
may take some time to time out.

5.4 Fault tolerant save

Problem and context: Some federates may crash or
hang during save. This may cause the save to terminate
with an exception.

Design pattern: The federate initiates a save. Some
federates may be lost which will result in an exception.
Save is retried over and over until it succeeds.

Consequences: Only the federates that survived the
save attempts were actually saved. If a federate hangs it
may need to be killed manually but after that the
federation will save. If the initiating federate crashes
no save will take place.

5.5 Failure monitoring

Problem and context: A federate need to be up to date
about the status of a specific federate and monitor
when it joins, resigns or crashes.

Design pattern: The monitoring federate subscribes to
the MOM federate object class and monitors it for the
other federate. It also subscribes to the FederateLost
MOM interaction.

6. Further Implications for Fault Tolerant
Federations
After recovering after a fault a federate will want to
rejoin the federation. While it is technically possible to
rejoin a federation at any time there are several other
challenges associated with this particularly related to
the scenario. Several of these problems are similar to
the ones of “late joining federate” situation.

6.1 Life cycle of a fault in a federation

Figure 12: Federation fault handling and degradation

After the fault occurs the RTI may detect the fault and
signal it to the federates. During the time this takes the
degradation is not well controlled.

The federation can now start handling the loss, for
example by removing objects, adjusting ownership or
activating stand-by functionality. How the loss
handling is done should be covered in the federation
agreement. After this is completed the federation
executes with a well controlled degradation.

We now assume that the fault is handled and the
federate wants to rejoin. After the federate has
completed the Join and the exchange of information
could in principle start again.

In most real cases however, a resynchronization has to
take place. The returning federate needs to go through
configuration and re-initialization to prepare itself to
re-enter a federation. This can be particularly difficult
if the rest of the federation is continuously executing a
scenario.

Furthermore, a federate might not be allowed to re-
enter a scenario at any given time. Due to the current
state of the federation and scenario, a federate might
have to wait until the rest of the federation (the other
federates) allows it.

Design Patterns to handle these situations are not
limited to federates joining after a fault has occurred.
The normal execution of a federation might allow late-
joining federates or federates that leave the federation
and rejoin later. Common for all these design patterns
are that they are part of the federation agreement and
not implemented as part of the HLA standard.

7 Conclusions
With the fault tolerant additions to HLA Evolved it is
finally possible to develop fault tolerant HLA
federations in a standardized way. While these
additions will not compensate for all types of faults
that can occur during a federation execution they still
make it possible to reach new levels of fault tolerance.

Since the standard only specifies the API for the fault
tolerance, not the implementation, we can expect RTIs
from different sources to start competing with regards
to their fault tolerance capabilities.

A federation and its federates will need to be modified
to take full advantage of the fault tolerance additions.
This paper provides a number of design patterns for
this.

Fault tolerance has been lagging behind in the HLA
standard. The new additions will open new possibilities
and applications for HLA technology. As the practical
experiences from developing fault tolerant federations
expand during the coming years we may also see

further fault tolerance additions being made to future
versions of HLA.

8. References
[1] “Towards Fault Tolerant RTIs, Federates and

Federations”, Trevor Pearce, Björn Möller, 05S-
SIW-129, 2005 Spring Simulation Interoperability
Workshop, SISO, April 2005

[2] “IEEE 1516, High Level Architecture (HLA)”,
IEEE, www.ieee.org, March 2001.

[3] “Developing the Fault Tolerance Support
Extensions for HLA Evolved”, Björn Möller,
Mikael Karlsson, 05E-SIW-019, 2005 European
Simulation Interoperability Workshop, June 2005

[4] “RTIperf 1516 a HLA 1516 Performance Test
Tool”, Pitch Technologies, www.pitch.se/rtiperf.

[5] “1516.3-2003 IEEE Recommended Practice for
High Level Architecture (HLA) Federation
Development and Execution Process (FEDEP),
IEEE, www.ieee.org, 2003

Author Biographies
BJÖRN MÖLLER is the vice president and co-
founder of Pitch Technologies, the leading supplier of
tools for HLA 1516 and HLA 1.3. He leads the
strategic development of Pitch HLA products. He
serves on several HLA standards and working groups
and has a wide international contact network in
simulation interoperability. He has twenty years of
experience in high-tech R&D companies with an
international profile in areas such as modeling and
simulation, artificial intelligence and Web based
collaboration. Björn Möller holds an M.Sc in
Computer Science and Technology after studies at
Linköping University, Sweden and Imperial College,
London.

MIKAEL KARLSSON is is the chief architect at
Pitch overseeing the world’s first certified HLA IEEE
1516 RTI as well as the first certified commercial RTI
for HLA 1.3. He has more than ten years of experience
of developing simulation infrastructures based on HLA
as well as earlier standards. He also serves on several
HLA standards and working groups. He studied
Computer Science at Linköping University, Sweden.

BJÖRN LÖFSTRAND is Manager of Modeling and
Simulation Services at Pitch Technologies.

He holds an M.Sc. in Computer Science from
Linköping Institute of Technology and has been
working as with HLA federation development and tool
support since 1996. Recent work includes developing
design patterns for HLA based simulation in the future
Swedish Networked Based Defense.

