
1. Introduction
The High-level Architecture (HLA) [1][2][3] was

originally developed by the US DoD as a successor

to both DIS [4], that supports real-time platform

simulations, and ALSP [5], that supports event-

driven theater-level simulations. HLA is the lead-

ing, and actually the only standard that fully sup-

ports interoperability for any information exchange

model between real-time simulations (like Live

simulators), paced real-time systems (like Virtual

simulators) and time-stepped and event-driven sys-

tems (like Constructive simulations).

There are great benefits from using exactly one

interoperability standard for connecting all different

kinds simulators. This facilitates reuse across or-

ganizations and enables the development of com-

mon knowledge, tools, components and processes.

At the same time, just like an advanced sports car

may introduce challenges to a less experienced

driver, all the functionality and flexibility of the

Object-Oriented HLA - Does One Size Fit All?

Björn Möller

Fredrik Antelius

bjorn.moller@pitch.se

fredrik.antelius@pitch.se

Keywords:

HLA, Middleware, C++, Java, FOM, Code generation, OO-HLA

ABSTRACT: The HLA RTI is accessed using a standard service API that is independent of application do-

main. A popular approach to simplify the use of HLA is to hand-code, or to generate an object-oriented RTI

middleware with an API that closely matches a specific FOM. This is informally known as Object Oriented

HLA (OO-HLA).

This paper describes OO-HLA with pros and cons and points to some important design considerations. It also

summarizes some practical experiences from designing, implementing and using a COTS product that gener-

ates OO-HLA middleware in C++ and Java.

OO-HLA middleware can greatly simplify the implementation of HLA interfaces for federates, improve quality

and save time and money. At the same time, such a FOM-specific API will never be able to support generic,

domain-independent tools, for example for federation management and data logging, thus limiting the potential

for reuse. Another fact that reduces the potential of OO-HLA APIs, as compared to the current standardized

HLA API, is that one single FOM will never be able to support all current and future interoperability needs.

There are fundamental differences between object oriented programming languages and HLA. A number of

assumptions about how a federate wants to use for example ownership, DDM and time management must be

made in order to support these services in an object oriented API. Similarly it is also necessary to make a num-

ber of assumptions about the HLA-based interplay between federates in order to fully use object oriented fea-

tures such as method invocations.

The overall conclusions are as follows:

- It is of great benefit to both have access to the traditional, generic HLA API and to be able to hand-code or

generate FOM-specific object-oriented middleware.

- A commonly used subset of the full HLA functionality directly matches the object-oriented constructs.

- For more advanced HLA concepts the object oriented paradigm is too limited to allow a direct mapping.

These concepts, like time management, ownership and DDM can indeed be made available based on additional

utility classes, design patterns and exception handling. There are several potential structures of such an API,

for example with respect to time-stamping and ownership. Different designs will match different users needs.

- It is possible to create one standardized API pattern for OO-HLA but it is more likely that several different

designs patterns are necessary to support different users needs.

HLA standard and API may present a challenge to a

new developer. A popular way to circumvent this is

to provide middleware to simplify the use of HLA.

A number of such middleware implementations for

the HLA have been produced during the last dec-

ade. A few of them have been commercial products

whereas most of them have been in-house efforts in

industry or government projects. In many cases

they have attempted to match HLA objects to ob-

ject-oriented programming objects in C++ or Java.

The authors of this paper have been lead designers

of a middleware generator (Pitch Developer Studio

[6]) that generates both C++ and Java source code.

This paper summarizes our analysis of important

aspects of object-oriented HLA (OO-HLA) and

describes some practical experiences and design

aspects in section 4.

In a recent SISO initiative a study group for object

oriented HLA (OO-HLA [7]) has also been sug-

gested. The purpose of this paper is to shed some

light on some object-oriented approaches and chal-

lenges for HLA middleware, to describe some prac-

tical experiences, and to give the author’s views on

the road ahead.

2.1 Interoperability and object oriented middle-

ware

The discussion about object oriented middleware is

in no way unique for HLA. This approach has been

used for example for DIS as well as many non-

standard (proprietary) interoperability approaches,

both service-oriented and protocol-based. It shall

also be noted at this point that the HLA API is al-

ready object-oriented using the main object classes

RTIambassador for calls to the RTI and Feder-

ateAmbassador for callbacks from the RTI to the

federate.

This makes sense since HLA is an interoperability

architecture between systems (called federates), not

necessarily between specific object instances in

different systems. As an example, what is repre-

sented as a Brigade object instance in one system

may be represented as a Brigade or, alternatively,

as numerous Soldier object instances in another

system.

For an object-oriented developer who is used to

being in control of all objects in participating sys-

tems this is often perceived as a limitation or even a

challenge. However, for many real life applications,

where simulations are acquired from different sup-

pliers, systems need to be reused and older systems

are gradually replaced with newer systems, this is

instead a must.

2.2 Flexible or Fixed FOM?

The representation of the information exchange

model, here called the FOM (using HLA terminol-

ogy), is crucial for the design of object oriented

middleware. The information model may be either

fixed, like in DIS or if the effort is limited to a par-

ticular FOM (like RPR2 [8]). It may also be flexi-

ble which means that it is supplied for example in a

file (like the HLA FOM) or as part of the program-

ming calls.

For a fixed information model it is possible to de-

sign an object oriented API that is also fixed. For

flexible information models it is necessary to de-

sign a mapping whereby the API is derived for ex-

ample from the FOM. If complex data types, like

records or arrays, are described as part of the FOM

this also requires a mapping.

For a fixed information model the most obvious

implementation approach is to simply hand-code it.

For a flexible information model a code generator

may be the most efficient approach. If the fixed

information has a lot of repeated items it makes

sense to use a generator here too. In most cases

where code generation is used, large static code

chunks may still be hand-coded and independent of

the FOM. These are sometimes put in a runtime

library.

2. About HLA middleware
This sections examines some common types of

middleware for HLA. The reader is assumed to

have some knowledge of HLA.

2.1 Calling the RTI without middleware

An application that doesn’t use any middleware

will need to call the RTI directly using the standard

services in the HLA Interfaces Specification, as

shown in Figure 1.

The application instantiates an RTI ambassador to

which it makes calls. Callbacks from the RTI is

delivered to a Federate ambassador object that was

initially supplied by the application. The developer

needs to understand the required calling patterns,

for example Creating a Federation, Joining a Fed-

eration, Publishing and Subscribing and then Regis-

tering an object. In addition to this, and just as

Figure 1: An Application without Middleware

critical, the developer needs to develop code that

handles the incoming attribute and parameter data,

provided as byte arrays, and convert them to native

variable values.

In practice almost all developers implementing

their first federate start with an existing sample

federate and extends it to fit their needs.

2.2 Simple HLA middleware

Many developer groups quickly find out that large

pieces of code are repeated between different feder-

ate implementation projects. This usually leads to

the development of simpler middleware libraries

that abstracts and encapsulates commonly used

HLA functionality.

In the example shown in Figure 2 all of the initiali-

zation steps, like Creating and Joining, are encapsu-

lated by the MyInit call.

Most of the interplay with the RTI is still visible to

the application and needs to be explicitly handled.

It is possible to design this type of middleware in

such a way that class and attribute names are pro-

vided as parameters to the middleware. This will

make the middleware “FOM flexible”. A resulting

drawback is that this degree of interpretation makes

the implementation and use of the middleware error

prone.

2.3 Object-oriented HLA middleware

Since HLA supports shared object instances across

a federation, the next obvious step is to represent

shared object instances as local C++ or Java ob-

jects. This can be seen as using the Proxy program-

ming pattern.

Figure 3 shows an example of the use of an OO-

HLA middleware. A local object of the class Car

with the name “A1” is created. The speed attribute

is later updated to 55.

Each shared HLA object instance is represented as

an object oriented class instance. Locally created

object oriented instances are automatically regis-

tered in the HLA federation. HLA object instances,

created by other federates, sometimes known as

remote objects, are automatically created as object

oriented instances locally in the application.

When an attribute value is updated on a local object

the middleware automatically sends an HLA update

to the federation. When an HLA update is received

the corresponding proxy object is updated, enabling

the application to read the value whenever needed.

Figure 4 further illustrates how a local object in

Federate A corresponds to a remote object in Feder-

ate B and vice versa. This mapping between the

HLA architecture and object-oriented representa-

tion has many inconsistencies. It is really only the

attribute of an object instance that a federate owns

that can be seen as local. The ownership can also

change over time. We have left the closed world of

the object-oriented application behind and objects

and attributes are now distributed across a federa-

tion. As attribute updates are sent over the RTI,

corresponding remote objects will temporarily have

different state.

It shall be noted that the mapping of HLA interac-

tions is even less obvious. There are actually quite a

few areas where the mapping between HLA and

object oriented programming is less obvious and

requires many additional assumptions, as will be

shown later in this paper.

The use of the word proxy above may be ques-

tioned since it implies that there is an original

Figure 2: Simple HLA Middleware Figure 3: Object Oriented HLA Middleware

Figure 4: Objects and OO-HLA middleware

server object available in some particular applica-

tion. The attributes of the proxy object may actually

be owned by several different federates but seen

from the local federate it may well be perceived as

a proxy object.

2.4 Pros and cons of OO-HLA

The first and most obvious advantage of OO-HLA

middleware is that it drastically reduces the learn-

ing curve for HLA. The developer can work with

well-known concepts like instantiating objects and

setting and getting member variables.

For an integration manager there are two obvious

benefits: implementation time and quality. Simula-

tors can be adapted to use HLA within a shorter and

more predictable time frame. The integration events

will also need less time since the common errors in

encoding and decoding of data is less likely to oc-

cur.

Middleware can also provide best-practice patterns

automatically, for example support for late joiners

or fault tolerance. It is also possible to capture some

aspects of federation agreements in the middleware.

There are also drawbacks or at least risks with us-

ing middleware. It may be tempting to configure

the middleware to subscribe to and maintain more

remote objects and attributes than necessary, which

will limit the performance and scalability. The im-

plementation may also provide more features than

necessary, also resulting in reduced performance.

The middleware may in some cases even prevent

implementation of the required HLA functionality,

since hiding and grouping HLA service calls also

gives the developer less control over them.

If the middleware is hard-wired to a specific FOM

is impossible to implement certain types of general-

purpose tools, like FOM-independent data loggers.

2.5 Mixing middleware and direct RTI calls

In theory it is possible to allow an application to

call the RTI using both an OO-HLA API and the

standard HLA API. This requires that there is no

relationship or unwanted side effects of the two

types of calls, otherwise the middleware's assump-

tions about the RTI state will fail. In practice there

are usually many such relationships and side ef-

fects. More or less all HLA services (except maybe

synchronization points) may at times be related. For

example, it is unacceptable if an application di-

rectly calls functions like Time Advance Request,

Unconditional Attribute Ownership Divestiture or

Resign Federation Execution behind the scenes

when the OO-HLA middleware is about to send an

attribute update with a particular time stamp. This

would make the federate break the HLA rules (and

trigger an RTI exception).

2.6 More about HLA middleware

It is also possible to create middleware that can

interoperate using several different standards or

methods, for example using HLA or DIS.

Middleware may offer some degree of FOM Agil-

ity, which is the ability of an application to adapt to

different FOMs. This agility will be limited by the

information that is exchanged between the applica-

tion and the middleware which means that it will

mostly be of syntactic nature. If, for example, an

application provides aircraft type, marking, nation-

ality and geocentric coordinates to the middleware,

it is possible to easily adapt to a FOM with a Lat/

Long coordinate system using FOM agility func-

tionality in the middleware. However, it will not be

possible to publish the damage state without modi-

fying the application.

Finally it shall be noted that other types of HLA

middleware, in addition to the three types above,

are also possible.

3. A Closer Look at OO-HLA
To fully understand OO-HLA it is necessary to

understand some basic differences and to study how

OO and HLA functionality can be mapped to each

other.

3.1 Some fundamental differences

There are a few fundamental differences between

an C++ or Java environment and an HLA Federa-

tion that needs to be understood:

Closed world assumption: The object oriented

world is known in advance by the developer and

can be fully understood and controlled. The federa-

tion on the other hand, including participating sys-

tems and their behavior, may not usually be fully

understood by the developer and may vary from

time to time.

Differences in life cycle: The life cycle of the fed-

eration may be different from the life cycle of the

application. A reasonably fault tolerant federate

may lose and then regains the connection to the

federation.

Availability of objects: A traditional program, if

correctly written, may be in full control of the life

cycle of an object such as an aircraft. In HLA ob-

jects can either be locally created or created in re-

mote applications and discovered locally. In an

HLA federation on the other hand a reflected,

“remote”, object may unexpectedly come and go.

3.2 Mapping OO and HLA functionality

Figure 5 shows an Aircraft object oriented instance

and a corresponding HLA Aircraft object. Each of

them follows the corresponding OO or HLA se-

mantics.

Some part of OO and HLA, like the concept of ob-

ject classes with attributes map very well. In order

to provide other HLA functionality, like attribute

ownership, time stamped values and synchroniza-

tion points it is necessary to make certain assump-

tions and/or add an extra layer of design in the ob-

ject oriented API. Vice versa it may also be neces-

sary to make certain assumptions in order to imple-

ment object oriented programming across the HLA

services. Figure 6 provides a summary of the map-

ping. Green cells in the table indicates that a good

match exists. Yellow cells indicate that it is neces-

sary to make additional decisions and constructs in

order to call HLA using OO middleware or to pro-

vide OO functionality across HLA.

3.3 Good matches

The following concepts have a good match between

OO and HLA:

Object classes with subclasses. Both OO and HLA

provides these constructs with similar semantics.

Class attributes. The semantics and structure of

OO and HLA class attributes, including their in-

heritance is very similar.

Updating of single attributes. In this case HLA

has object model a richer semantics but the basic

semantics is similar.

3.4 Mimicking HLA semantics in OO

In the following cases a number of HLA concepts

need to be mimicked using tailored OO classes or

additional methods and exceptions:

Object world life span: An OO application with its

locally instantiated objects is always online and

available whereas the federation and its objects

isn’t available until the create/join/publish/

subscribe sequence has been carried out. Meta data,

functionality and exceptions need to be introduced

to handle this.

Synchronization points and Save/restore: Han-

dlers, handshaking and exceptions need to be intro-

duced.

Declaration of interest (publish/subscribe):
Functionality for expressing interest in selected

classes need to be introduced.

Object instance life cycle: Functionality for han-

dling remote objects that may come and go needs to

be introduced. It may be necessary to hide newly

discovered objects to the application until certain,

required attributes have been initialized.

Grouped attribute updates: In many cases several

attribute values need to be updated as one atomic

transaction which requires additional methods or

classes.

Figure 5: Providing an HLA API using OO and Vice Versa

Ownership of attributes: An OOHLA middleware

needs to provide “meta-functions” for the OO at-

tributes to initiate ownership transfer, to set the

“transferable/acceptable” state, to determine current

ownership status and to perform ownership negotia-

tion when required. It may also be required to pro-

vide notification functionality for changes in own-

ership. Since there are several ownership transfer

patterns an OOHLA middleware may only support

a subset of these.

There are some “best-practices” that may be sup-

ported, for example sending a last update of an at-

tribute value before ownership is released. This

enabled the acquiring federate to pick up using the

most recent attribute value.

In addition to this it is necessary to handle the situa-

tion where the application, through the OO middle-

ware API, tries to update an attribute that is un-

owned by the federate. This may be considered an

exception, an inconvenience or it may simply be

ignored. An update of several attributes may run

into the situation where only a subset of these at-

tributes can be updated. This may be considered

unacceptable since this was an atomic transaction

or the issue may be ignored.

Time stamped attribute values and interacitons:
HLA offers the ability to exchange time stamped

attribute updates and interactions. Some applica-

tions may want to use application-wide time stamp-

ing, for example in frame-based (time-stepped)

simulations. In other cases each shared attribute

value or interaction may be associated with its own

time stamp, for example in many event-driven

simulations.

Time advance request/grant: This HLA function-

ality must be provided in an OO API. It may be

used with or without the above time stamps. If both

are used the middleware needs to manage the pro-

HLA Object Oriented

Life span/availability federation including fault toler-

ance. (Connect/Join/Resign/Disconnect/Fault han-

dling)

Need to add meta data or functionality for checking

availability or “on-line status” of federation and

shared objects. May include error signalling.

Synch Points Need to design Synch point handlers and correspond-

ing application logic

Save/Restore Need to implement state save and design handshak-

ing.

Declaration of interest in objects and interactions

(Pub/Sub)

Need to choose which objects and interactions to

share.

Shared object instances (discover/remove) Need to handle unpredictable life span of remote

objects.

Object Classes with subclasses Object Classes with subclasses

Need to make assumptions on how an interaction

should be dispatched to an object instance on sub-

scribing federate.

Method invocation on object instance

Class attributes Class attributes

Updating of single attribute Updating of single attribute

Need to make assumption on how key attributes

map.

Object references using pointers

Grouped attribute updates Need to create method for “atomic” update

Ownership of attributes Need to create meta functions, handle ownership

negotiation, handle lack of ownership, etc

Time Stamped attribute values Need to add meta data for attributes with time stamp

or use federate-wide time stamp

Time advance request/grant. Need to add meta data to represent current time and

OO calls to invoke time advance and callbacks for

granting. Need to prevent updating during TAG.

Attribute value retraction Need to provide functionality for monitoring and

propagating retracted values

DDM filtering Need to decide how application data maps to DDM

regions for updates as well as for subscriptions.

Figure 6: Detailed Comparison of OO and HLA Semantics

duction of time-stamped data during time advance

grants.

Attribute value retraction: Handlers for propaga-

tion the effect of retractions needs to be introduced

DDM Filtering: General functionality for specify-

ing how DDM regions are derived from application

date needs to be introduced, both for subscriptions

and registering and updating object instances.

3.5 Mimicking OO semantics in HLA

In the following case OO concepts need to be mim-

icked using tailored federation agreements:

Methods: A federation agreement needs to be de-

signed that describes how an HLA interaction

should be mapped or resolved to a particular object

class instance, for example using a “target object”

parameter.

Pointers: In case OO objects use pointers to refer-

ence each other it is necessary to design a federa-

tion agreement that describes how they can refer-

ence each other using a globally valid unique iden-

tifier, like a name string.

Multiple inheritance: HLA only provides single

inheritance. This isn’t a problem since the OO

classes in OO HLA are derived from the HLA

FOM so we derive a class structure that may or

may not have multiple inheritance from an OO

class structure which always is limited to single

inheritance.

3.6 Additional concerns when designing OO

HLA

There are several additional design decisions that

need to be made when creating an OO-HLA mid-

dleware:

Statefulness: It is of great benefit to have a stateful

middleware that maintains full copies of the most

recent published and subscribed attribute values.

This will facilitate the support for late join in the

federation. At the same time this limits perform-

ance and scalability. Maintaining a list of sent inter-

actions for a federate that is temporary discon-

nected from the federation is just as useful in the

short run as impossible during longer disconnec-

tions.

Data type handling: HLA attributes and attribute

values can be mapped to C++ or Java attributes.

The data type of the HLA attribute needs to be

mapped to a corresponding native data type. This

may be simple for some data types but more diffi-

cult for others. It may be necessary to create new

C++ or Java data types for more complex values

such as records or arrays.

An HLA 1516-2000 or HLA Evolved FOM con-

tains a complete and unambiguous specification of

how attribute, parameter and other federation data

shall be encoded and decoded when transmitted

(whereas the HLA 1.3 FOM doesn’t).

Polling or notification of state changes: The ap-

plication can gain insight into changes in attribute

values for example by polling or by getting notifi-

cations from the middleware.

Compile time or runtime control: Many of the

configuration aspects, like what to publish and sub-

scribe or how to resolve interactions to object in-

stances may be configured during generate/compile

time or at runtime.

Handling of threading and mutability: The API

can be implemented to support multi-threading or

to use the thread of the application (using “tick”

style calls). It may be wise to perform defensive

copying of objects created by the middleware. This

approach may differ between a Java API and a C++

API.

Support for specific federation agreements:
Some federation agreements may require spe-

cific behaviors from the middleware. A simple

example is to auto-achieve synch points. One

example is the RPR FOM which uses the

“periodic” update method, as opposed to the

more obvious “on change” update criteria.

4. Experiences from Developing an OO-

HLA Code Generator
A COTS product (called Pitch Developer Studio)

that generates OO-HLA middleware has been de-

veloped. It generates C++ code for 32 and 64 bit

applications mainly on Windows and Linux as well

as Java code for Java 5 and higher.

The work flow of the product is shown in Figure 7.

In the first step the user provides some general set-

tings, like application name, use of time manage-

ment, use of MOM data, etc. In the second step the

user selects a FOM and then selects and configures

classes, attributes, interactions and data types. The

FOM may later be replaced, which typically hap-

pens in a federation where the Federation Agree-

ment and the FOM is extended. Finally code can be

generated in C++ and/or Java for a number of com-

piler versions, including the generation of make or

ant files as well as documentation.

4.1 Important Design Decisions

The overall goal of the product was to make it con-

siderably easier and less costly and error-prone to

adapt a simulator to HLA. The first version sup-

ports federation management (except save/restore),

declaration management and object management. A

second version, supporting selected aspects of own-

ership and time management is underway and will

be released during 2010. A future version will sup-

port DDM.

While the creation of correct code templates for a

code generator is a tedious task the most demand-

ing task may well have been to create a design to

meet this goal. Our analysis showed that generat-

ing code that supports all possible ways to utilize

the HLA functionality would result in an API that

was even more complex than the original HLA

API. The following design decision were taken:

 Real-time, paced real-time and frame based

simulation should all be supported. Event-

driven simulations introduces considerably

more complex handling of time-stamped data

and was omitted.

 The general style of the API should be based on

design patterns [9] such as observer/observable.

 The middleware should be stateful, saving the

most recent value for each attribute value. This

facilitates fault tolerance and late joiners.

 Convenience functions, like lookup tables for

key attribute values and the dispatching of in-

teractions as method calls should be added.

 Certain federation agreement aspects of the

RPR FOM should be supported, like RPR non-

standard data types, grouping of attributes in

updates and convenience functions for spatial

data.

 Round-trip support, where the user can gener-

ate new versions of the middleware is sup-

ported by providing an API that enables the

user to maintain the middleware code sepa-

rately from his own code. The generated code

for a particular user configuration will maintain

the same entry points and parameters.

The product is commercially available and it is

currently in use by customers in Europe, North

America and Asia.

5. Discussion – Does One Size Fit All?
In our initial designs of OO-HLA the generated

code was mainly a function of the FOM and the

HLA standard. As we kept extending the design

we noted that other requirements, including the

support for specific federation agreements and

need for convenience functions, was just as impor-

tant factors for the code generation. Our current

work shows that the support for all aspects of

HLA, for example both frame-based and event-

based time management, would make the resulting

code utterly complex.

Figure 8 shows our current understanding. To get

useful middleware it’s not enough to just generate

code from the FOM. It is just as important to take

into account for example:

Figure 7: Sample OO-HLA Code Generator Workflow

Federation agreements, like how and when attrib-

utes are updated, how late joiners are handled,

which type of overall time management that is

used and more.

Application requirements, like the need for con-

venience functionality, dispatching of interactions,

how and when the application learns about updated

values, requirements for performance and scalabil-

ity, multi-threading and memory management and

more.

5.1 Examples with Conflicting Requirements

The following examples show some cases where

we have found it hard to design one general OO-

HLA API that meet the requirements and at the

same time are practical to work with:

Non-standard update modes, like periodic up-

dates or grouped updates where you always want

to send updates of a group of attributes although

only one attribute was changed. A well-known

example is the widely used RPR FOM. It is of

course possible to create good OO-HLA middle-

ware for the RPR FOM but it would have many

behaviors that would be unacceptable in other

types of federations.

Different use of time management where there is

a large number of simulations that would benefit

from frame-based OO-HLA middleware. In this

case the entire state of the objects in the OO-HLA

middleware moves in the same time step, or frame.

This middleware would be unacceptable for an

event-driven simulation which can produce future

attribute values with arbitrary time stamps. Both

the use of time management services and the use of

federate-wide versus attribute-specific time-stamps

would need to be different.

5.2 Completeness or easy to use?

It is only for a subset of the HLA services that the

object oriented paradigm makes things easier. For

other functionality, like ownership management,

the full set of HLA services still needs to be pro-

vided. The HLA standard lists 18 ownerships ser-

vices which would all need to be supported for

each attribute or groups of attributes from the same

class. This makes the list of services very long

without making HLA ownership any easier to use.

Another approach would be to have middleware

that supports federation agreements with specific

usage patterns. One example is a usage pattern

where ownership is transferred between named

federates. The middleware services would then be:

1. Transfer ownership to federate with name=X

2. Accept ownership transfer from federate with

name=Y

3. Decline ownership transfer from federate with

name=Y

Adding a number of patterns like this makes the

middleware more useful and easily understood by

federate developers. At the same time this makes

the middleware even more complex if many differ-

ent patterns would need to be supported.

We think it is a better idea to develop object ori-

ented HLA middleware with a limited functional-

ity that is highly useful to a particular class of fed-

erations than to create a “one size fits all” middle-

ware with a full expansion of all possible usage

patterns of everything in the FOM.

6. Conclusions
HLA is in essence a Service-Oriented architecture

Figure 8: Federation Agreements and Requirements Affects the Optimal OO-HLA Design

for distributed systems and Object Orientation is a

programming paradigm, having fundamentally

different object concepts. Still it is possible to cre-

ate middleware that allows a user to interoperate

using HLA through an object-oriented API for a

specific FOM. In this case the middleware is de-

signed so that the object-oriented classes match the

shared object classes. This enables convenient ac-

cess to a subset of the HLA functionality.

This type of middleware can make it easier,

quicker and less error-prone to adapt simulations

with similar requirements to the HLA standard.

The result is that it can extend the market for HLA

by enabling more users to use HLA in an easy

way.

Each specific OO-HLA middleware will be differ-

ent depending on the federation agreement

(including the FOM) that needs to be supported as

well as additional application requirements. Any

attempt to fully capture all HLA services and all

application requirements and commonly used fed-

eration agreements in an OO-HLA API will result

in an API that is considerably more complex than

the HLA specification, forfeiting its original pur-

pose. OO-HLA APIs can complement, but not

replace the traditional way to access HLA, using

the standard HLA API.

Finally two things should be noted:

 A move towards a service oriented approach

for distributed systems requires more than just

the replication of attribute values.

 OO-HLA simplifies the access to commonly

used HLA services but doesn’t necessarily sim-

plify the design of distributed systems.

References

[1] “High Level Architecture Version 1.3”,

DMSO, www.dmso.mil

[2] IEEE: "IEEE 1516, High Level Architecture

(HLA)", www.ieee.org, March 2001.

[3] IEEE: "IEEE 1516-2010, High Level Archi-

tecture (HLA)", www.ieee.org, A.k.a.

“HLA Evolved”

[4] IEEE: "IEEE 1278, Distributed Interactive

Simulation (DIS)", www.ieee.org,

[5] Weatherly, R.M., Wilson, A.L. and Griffin,

S.P.: "ALSP - Theory, Experience, and Fu-

ture Directions,", Proceedings of the 1993

Winter Simulation Conference, pp. 1068-

1072, Los Angeles, CA, 12–15 December.

[6] Pitch Technologies: “Pitch Developer Stu-

dio User’s Guide”, October 2009

[7] Object-Oriented HLA Study Group reflec-

tor, SISO, www.siostds.org

[8] SISO, “Real-time Platform Reference Fed-

eration Object Model 2.0 ”, SISO-STD-001

SISO, draft 17

[9] Gamma, E et.al. “Design Patterns: Elements

of Reusable Object-Oriented Software”,

ISBN 0-201-63361-2

Author Biographies

BJÖRN MÖLLER is the vice president and co-

founder of Pitch, the leading supplier of tools for

HLA 1516 and HLA 1.3. He leads the strategic

development of Pitch HLA products. He serves on

several HLA standards and working groups and

has a wide international contact network in simula-

tion interoperability. He has twenty years of ex-

perience in high-tech R&D companies, with an

international profile in areas such as modeling and

simulation, artificial intelligence and Web-based

collaboration. Björn Möller holds an MSc in com-

puter science and technology after studies at

Linköping University, Sweden, and Imperial Col-

lege, London. He is currently serving as the vice

chairman of the SISO HLA Evolved Product De-

velopment Group.

FREDRIK ANTELIUS is a Lead Developer at

Pitch and is a major contributor to several com-

mercial HLA products. He holds an MSc in com-

puter science and technology from Linköping Uni-

versity, Sweden.

