

Processes and Tools for Management and Reuse of FOM Modules

Björn Möller

Fredrik Antelius

Martin Johansson

Björn Löfstrand

Åsa Wihlborg

Pitch Technologies

Repslagaregatan 25

S-58222 Linköping

Sweden

bjorn.moller@pitch.se

fredrik.antelius@pitch.se

martin.johansson@pitch.se

bjorn.lofstrand@pitch.se

asa.wihlborg@pitch.se

Keywords:

HLA Evolved, OMT, FOM Modules, FEDEP, Reuse, Tools

ABSTRACT: One of the most important new features of HLA Evolved is FOM Modules. The FOM is used to

describe the information that is exchanged in a federation. By making the FOM modular it is possible to focus

on certain aspects of the data exchange. This makes it possible to identify, develop and isolate more general or

more specific aspects of the data exchange. Examples of more general and thus more reusable modules are

commonly used data types or federation management interactions. Less reusable FOM modules are for exam-

ple project-specific platform extensions to the RPR-FOM.

The first part of the paper covers processes for the development and maintenance of reusable FOM modules.

These can be developed and reused in a “top-down” manner within domains (i.e. defense, space, industry, etc),

groups of organizations (e.g. SISO, NATO), organizations (i.e. companies, defense components) and individual

projects. Important success factors here are a well-defined lifecycle process, proper management support and

a use case and test driven development approach.

It is also possible to develop reusable FOM modules from a more technical “bottom-up” perspective. Useful

components like FOM elements are sometimes reused within and across federations, often even beyond the

planned life span. The main reusability criteria here is “the survival of the fittest”.

The second part of the paper describes how a specialized tool can be used to develop and maintain a project

consisting of several FOM modules for use in a particular federation.

These modules need to be inspected, understood and verified both against the HLA Evolved standard and

against each other. Since FOM modules can build upon each other it is important that a tool can help the user

maintain compatibility and avoid undesirable dependencies between modules.

When managing FOM modules it is important to understand what role each FOM module plays from a reuse

perspective. Is it a highly standardized module or a temporary project development? This affects which mod-

ules that should be adjusted when consistency and compatibility issues are discovered. It affects several aspects

of refactoring across modules. Last but not least it affects how a tool can provide “best practices” assistance

to a new user. A comparison is also made between maintaining FOM modules using general-purpose XML

tools versus a specialized FOM module tool.

Finally some thoughts on the above processes and tools are given, based on the on-going work with the NATO

Snow Leopard federation and other practical applications.

1. Introduction
Whenever you connect two or more systems to ex-

change data there will be an information exchange

data model. This model may be explicit or implicit

but it will always be there. For typical business

systems this model may be focused on providing a

simple service with a well-known set of outcomes,

for example verifying a credit card transaction. For

simulation systems that are required to interoperate,

the information exchange may include a large num-

ber of entities and interactions, possibly describing

an entire battlefield.

A large number of simulators may need to consume

information from each other. The resulting effect of

a small state change may, from case to case, be

minimal or massive and it may sometimes be hard

to predict for the original information producer. For

the simple interaction between business systems a

two-part point-to-point data exchange may be suffi-

cient. For simulation systems with many participat-

ing systems on the other hand a common data bus is

the optimal solution.

1.1 Challenges with hard-coded domain models

When exchanging data the most obvious approach

is to create a network protocol. This specifies where

in each exchanged data block each domain property

should be stored, for example DIS [1]. Certain

bytes in the exchanged packets may describe the

marking or the position of an aircraft, in effect hard

-coding the protocol to a particular solution ap-

proach for a certain domain. This makes it conven-

ient to adapt each new simulator to the protocol

since both the format and the content of the proto-

col are well-known in advance. The problem here is

that there will always be variations in the require-

ments and that requirements will grow over time.

For slight variations a few non-standard packets can

be introduced. For applications with different re-

quirements the protocol may not be useful at all. It

is also difficult to introduce more advanced simula-

tion services since each simulator may need to cor-

rectly implement them.

1.2 Separating out domain information

General purpose protocols, like TCP/IP [2], FTP

[3], HTTP [4] and SMTP [5] have generally been

very successful. Today they form the basis of the

Internet and any corporate network. These typically

standardize the technical level of communication.

The actual domain data, like the layout and text of a

web site are described on a higher level of commu-

nication. By separating the lower level protocol

from the domain data each user in various applica-

tion domains is given the power to describe his

domain information.

The trend today is to capture the information ex-

change data model on a higher and more flexible

level than the network packet level. This can be

seen in the FOMs of the HLA standard [6], the

LROMs of the TENA framework [7], the WSDL

approach of Web Services [8], the Topic of the

DDS [9] architecture and more. A parallel can also

be drawn on the Variable Message Format (VMF)

protocol of the Link-16 [10] family.

2. The HLA FOM
The information exchange model of HLA is called

the Federation Object Model (FOM). It is based on

the Object Model Template, which is one part of

the HLA standard. The FOM describes both the

information that is exchanged at runtime as well as

the usage and parameters of a number of additional

HLA services. It is important to understand that the

FOM is only one part of the “Federation Agree-

ment”. The Federation Agreement is the document

where you find descriptions of overall federation

purpose, expected sequences of interactions, which

federates that are producers and consumers of cer-

tain data, networking, etc.

2.1 Content of a FOM

The FOM can contain data in a number of different

tables. A typical starter FOM usually includes the

following tables.

Identification table, describing things like the pur-

pose, author and version of the FOM.

Object Classes and Attributes tables, describing

the persistent entities (like aircrafts) that are shared

between the federates

Interaction Classes and Parameters tables, de-

scribing short-lived data like commands or radio

traffic (i.e. events) that needs to be exchanged.

Data Types table describing the technical format

and interpretation of the attribute and parameter

data.

More advanced FOMs may also include the follow-

ing:

Additional Federation Execution Data, like the Di-

mensions table (for DDM data routing), Synchro-

nization Points table (for synchronizing the fed-

eration) and User Supplied Tags table (specifying

the data format of extra parameters in certain HLA

Services).

Additional Infrastructure Settings like the Time

Representation table, the Update Rate table, the

Transportation Types table and the Switches ta-

ble.

For additional documentation across the tables it is

also possible to attach a number of notes using the

Notes table. There is also a Services Utilization

Table.

2.2 Evolution of the FOM format

The FOM follows the OMT format of HLA. This

format has evolved over time as shown in Figure 1.

Two major driving factors can be noticed. First of

all, new tables have been added or existing tables

have been extended to meet new technical require-

ments. Secondly, the technical format has gradually

been adapted to follow the most recent XML for-

mat descriptions.

2.3. Maintaining a FOM for multiple HLA stan-

dards

It is possible to convert FOMs using the older for-

mat to a newer format with automated tools. In

some cases design decisions needs to be made, like

mapping Routing Spaces to Dimensions or splitting

a FOM into modules. This can technically be

solved with a wizard, allowing for user input during

the conversion process.

When maintaining a FOM for multiple standards it

may be more convenient to keep the original FOM

in a newer format since this is in many respects a

superset of the older format. Data can then be con-

verted back and new types of information can sim-

ply be excluded.

3. FOM Modules

The suggestion to make the FOM modular was the

last comment in the last SISO comment round for

the new HLA 1516-2010 standard. Still this idea

had been around and discussed since the very first

OMT specification in the 90’s.

The Modular FOM approach is very simple. Each

FOM module describes a certain aspect of the in-

formation exchange. A FOM module can contain

whatever FOM data that is required for its purpose,

for example just a few object classes with attributes

and corresponding data types. Several FOM mod-

ules can be combined into the final FOM to meet

the requirement of a federation. You may for exam-

ple combine a module describing vehicles with

other modules describing radio communication,

federation management and data logger control.

The FOM data from these modules are then merged

producing the union of the modules.

FOM modules make the development and reuse of

FOM data more powerful. In many cases it makes

FOM development easier since different develop-

ment groups or parts of the development cycle can

focus on particular areas of the FOM development.

For an extensive introduction to FOM Modules the

paper “Getting Started with FOM Modules” [11] is

strongly recommended.

3.1 Use cases for FOM modules

As described in [11], FOM modules can be used for

several purposes:

You can have different working groups develop

different parts of a FOM in a more convenient way.

You may for example have a radio specialist group

develop the “Radio FOM module” while the air-

craft specialists develop the “Aircraft FOM mod-

ule”.

You can put extensions to a reference FOM in a

separate FOM module. This will prevent you from

getting modified, “non-standard” versions of the

reference FOMs. More importantly, when you build

new federations using federates that use extended

reference FOMs, it is easy to inspect what exten-

sions that have been made and possibly to merge

them.

You can achieve extended reuse of some aspects

of a FOM. If you want to promote a standardized

way to start and stop all of your federations, irre-

spective of domain, you may put these interactions

in a separate FOM module.

You may also add more FOM modules to an al-

ready executing federation, thus extending the

scope of the FOM during runtime.

Figure 1: The evolution of the HLA OMT format

 Format Technical format Specified using New features

HLA 1.3 BNF (”LISP” style) BNF + textual specificatition -

1516-2000 XML DTD + textual specification Routing Spaces table replaced with Dimen-

sions. New table: Data types.

1516-2010 XML Three XML Schemas +

textual specification

Modular and extendable format. New ta-

bles: Update Rates, Services Utilization.

Extended tables: Transportation Types,

Identification

3.2 Some early modular FOM efforts

The HLA Evolved standard has recently been com-

pleted but there are already some early use cases for

the modular FOM and some related efforts. Some

examples are shown in Figure 2.

4 Processes for FOM module

development

From the point of view of a particular federation the

FEDEP/DSEEP [17] process describes at what

stage the FOM needs to be developed. In this paper

we look at the overarching perspective of reusing

FOM modules across projects. This is further di-

vided into how reusable FOM modules are pro-

duced and how they are later reused in other pro-

jects.

4.1 Developing standardized and reusable FOM

modules top-down

Assume that a certain community wants to increase

the potential for reuse of interoperable simulators.

One of the most important efforts towards that goal

is then to agree on a common, standardized FOM

module. Since requirements will vary from federa-

tion to federation a good starting point is to include

the most common shared objects and interactions in

their domain. More specialized aspects can be cov-

ered in project-specific FOM modules. As many

simulators in the community are adapted to the

common FOM module they will have a basic level

of interoperability.

Such FOM modules can be developed on several

levels as shown in Figure 3.

Restaurant FOM Sample FOM that is included in the HLA standard, available in HLA 1.3. 1516-2000 and 1516-

2010 format. This FOM has been modularized as a sample in the product described below. It will

be made publicly available on the SISO HLA Evolved PSG reflector in Sep 2010

RPR FOM FOM mainly targeted at real-time platform simulations, standardized by SISO, matches the DIS

data model. It is a good candidate for splitting into FOM modules. Some early work on modulari-

zation has been done as part of the BOM [12] standard, as described in another paper [13]

LINK-16 BOM The SISO LINK-16 BOM is essentially a FOM module for LINK-16 [14] data exchange.

NASA NASA has performed some early FOM module prototyping for the Constellation program as de-

scribed in another paper [15]

P2SN FOM Persistent Partner Simulation Network, previously Partnership for Peace Simulation Network.

Originally in HLA 1516-2000 format, now in HLA 1516-2010 format. Uses the RPR FOM as one

module and has both more general and more specialized FOM modules as described in another

paper [16]

NETN FOM NATO Education and Training Network FOM is expected to supersede the P2SN FOM above and

will thus be modular.

Figure 2: Some efforts related to FOM modules

Figure 3: Developing reusable FOMs top-down

On the overall community or domain level

(defense, space, energy, manufacturing, etc) FOM

modules can be developed in open international

standardization forums, like SISO. The RPR FOM

is an example of a FOM in the earlier HLA for-

mats that is developed this way. Major groups with

common needs, for example NATO, may also

choose to develop common modules.

On more specific levels reusable FOMs can be

developed within nations, within defense compo-

nents or within companies.

Some important success factors when developing

FOM modules are:

A clearly defined goal and a common require-

ments picture for the FOM module to be devel-

oped. Otherwise a consensus on a solution may

never be reached.

A well-defined development process where new

versions are developed, documented and released

in a clear process that is transparent to the partici-

pants. Otherwise numerous of intermediate and ill-

understood versions of the FOM will be used, ac-

tively preventing rather than enabling interopera-

bility.

Management support for the development activi-

ties, for participants and for the resulting FOM

module. If this cannot be achieved the develop-

ment resources may be under-critical and the FOM

will never be finalized or put into production.

Use-case and test-driven development. Practical

experiences show that a suggested FOM solution

that looks good on paper may contain minor

glitches that makes it hard or impossible to use.

Practical tests are the only solution to this. This

process is unfortunately seldom documented in

papers. An example from the DIS world of how a

data exchange model has been adjusted after test-

ing is the Directed Energy PDUs [18].

4.2 Developing reusable FOM modules bottom-

up

It is also possible to develop reusable FOM mod-

ules from a more technical “bottom-up” perspec-

tive. Useful components like FOM elements are

sometimes reused within and across federations,

often even beyond the planned life span. The main

reusability criteria here is usually “the survival of

the fittest”.

4.3 Reusing FOM modules

When reusing FOM modules in a federation a de-

veloper will typically start with some reference

FOM modules. These can then be extended with

locally produced FOM modules and extended with

some project-specific FOM modules. In this case

dependencies will typically be introduced. It is

now important to look at the life-cycle of different

modules. As shown in Figure 4, reference FOM

modules will probably have a version life-cycle in

the range of years whereas the project may update

a FOM module every month. Proper configuration

management of FOM modules is strongly recom-

mended here.

4.4 Resulting requirements for a FOM module

tool

Some important requirements for a FOM module

editing tool that can be derived from the above are:

1. A tool should make it easy to combine differ-

ent FOM modules that cover different informa-

tion exchange requirements of the federation. It

should be easy to get an overview of the com-

bined modules and to discover, analyze and

fix any mismatches.

2. A FOM module tool should enable a developer

to build upon standardized FOM modules,

Figure 4: Reusing FOM modules with different lice cycles

add his own local extensions and also to reuse

components from other, less related projects, as

shown in Figure 5.

3. Each FOM module designer need to clearly un-

derstand which of the FOM modules in a project

that he is responsible for updating and which

that are maintained by other designers. A tool

should support the developer in updating only

his own modules and keep other read-only.

4. It is important to understand which FOM mod-

ules that are allowed to depend on others mod-

ules and which these modules are. A FOM mod-

ule tool should assist in maintaining proper

dependencies.

5. In many cases a user wants to work with exist-

ing modules just to copy data types or object

classes that are generally useful. This module

may never be intended to be used in the final

FOM. A FOM module tool should make it easy

to reuse smaller components of older FOMs

that in their entirety may be less reusable.

5. A Next Generation FOM editing tool

A commercial tool for developing FOM modules,

Pitch Visual OMT version 2.0, has been developed

based upon the above analysis. It builds upon older

versions that supported HLA 1.3 and HLA 1516-

2000 FOMs. This versions is a complete reimple-

mentation with HLA 1516-2010 FOM modules as

the native file format. Still it supports many file

formats of older HLA versions. Pitch Visual OMT

2.0 is planned to ship September 2010.

The overall design resembles a traditional graphical

programming environment as can be seen in Figure

6. A project is composed from several FOM mod-

ules, including a standard or custom HLAstandard-

MIM. These modules are listed to the left and en-

Figure 5: Composing a FOM from existing modules

Figure 6: Overview of the Visual OMT 2.0 user interface

ables the user to inspect which tables that are in-

cluded in each module. A padlock icon indicates

that a module is read-only.

FOM modules are opened in the central work area.

By double-clicking on a particular table in a mod-

ule a developer can jump directly to that table, in-

spect FOM data, edit and use drag-and-drop.

The entire project is continuously analyzed in the

background. Issues (errors, warnings and tips) are

presented in the bottom area as a “To Do” list.

There is a traditional toolbar at the top. One of the

most interesting features here is the Global Search,

as described later in this paper.

5.1 Visualizing combined FOM modules

Most FOM modules contain classes and subclasses

for Object Classes and Interactions. The combined

modules thus may result in a very large class hierar-

chy. The classes of each FOM or a set of dependent

FOMs can be visualized as a tree graph in Visual

OMT.

Modularized FOMs build upon each other and often

extends classes in reference FOMs. The newly cre-

ated subclass in such an extending FOM will have

all its super classes defined as scaffolding classes.

A scaffolding class is a way for a FOM designer to

place a new class inside an existing class hierarchy

without the need to duplicate all the super classes

inside his FOM module. This allows the designer to

see the whole chain of objects from

HLAobjectRoot to the new class.

However, when looking at only one module it is not

possible to know if a class in the current module is

also defined in another module, or if the class in-

herits attributes from a super class in another mod-

ule. Classes exist in a context dependent on which

module it is supposed to merge with. This concept

is hard to grasp while only looking at one module at

a time. By combining several class trees and dis-

playing them together a more comprehensive view

of the context of the classes is created. In a com-

bined view it is easier to see where to place new

classes and to see how it fits with already existing

classes.

Figure 7 depicts such an combined class tree struc-

ture. The colored classes belong to the module cur-

rently being edited and the grey classes provide

context information. When there are multiple defi-

nitions of a class in several modules it is shown as a

stack. The dashed lined denotes a scaffolding defi-

nition. Here it is easy to see if a scaffolding class

has a proper full definition in another module and if

any of the definitions clash with other modules.

Editing is simplified by allowing drag and drop to

rearrange classes. Making it easy to maintain con-

sistency with other modules is also enabled by sup-

plying functionality to copy a full definition to a

module and create new classes that automatically

get the appropriate scaffolding classes to connect it

with the combined class hierarchy.

5.2 Locating information

Working in large FOMs, or rather with a collection

of FOM modules where the resulting FOM is large,

there are several features that can simplify naviga-

tion. In Visual OMT 2.0 there is a global search

function which make it possible to search the pro-

ject in order to find a certain type or concept. An

Figure 7: Object class view in Visual OMT 2.0

example of a global search can be seen in Figure 8.

It is possible to double click on an item in the list

to go to its corresponding table. There is also a

specialized datatype search used to find the

datatype appropriate for attributes and other con-

cepts that uses datatypes. In this search it is possi-

ble to sort the resulting datatypes on name, type

and other characteristics

To ease navigation in large class trees there is a

mini-map showing which part of the graph is cur-

rently displayed, visible in the lower left corner of

Figure 7. The mini-map also allows for quick navi-

gation. In the main view there is also the possibil-

ity to expand and collapse sub-trees to look at only

parts of the tree.

5.3 FOM dependencies

When working with FOM modules it is often a

good idea to gather information that many FOM

modules need in a single FOM module. This single

FOM module would contain datatypes, dimensions

and other objects shared among the FOM modules.

This introduces a dependency between the differ-

ent FOM modules in which one FOM module is

dependent on another and requires that it also is

used in a federation.

Another situation which would create a depend-

ency is when a FOM designer uses a reference

FOM, such as the RPR FOM, to create a FOM

module that extends the reference FOM.

Visual OMT 2.0 helps a FOM designer by allow-

ing him to explicitly define allowed dependencies

and then enforces them. Any usage of objects, such

as a data type, that’s not defined in the module

itself, or its dependencies, will generate a warning

prompting the user to either define the dependency

explicitly or to use another data type.

The concept of dependencies also reduces the

amount of data to process when editing large

FOMs, since data from modules that are not speci-

fied in dependencies will not show up as alterna-

tives when choosing data to use in the new mod-

ule.

5.4 Read only FOM modules

In larger projects the responsibility for creating the

FOM is often split up amongst a group of people

so that each person creates a FOM module that

together forms the final FOM. This means that

from the perspective of one person the FOM mod-

ules he is not responsible for should be considered

read only, as he lacks the authority to change them.

Another case in which a FOM module should be

considered read only is when developing an add-on

module to a reference FOM such as the RPR-

FOM, in which case the RPR-FOM should be con-

sidered read only. In cases such as these Visual

OMT 2.0 allows the FOM designer to mark a mod-

ule as read only. A read only module may not be

modified but FOM modules that depend on it are

allowed to make use of the data in it as described

earlier.

5.5 Sample FOM Module projects

Sample projects makes it easy to get started and

demonstrate how different parts of a FOM are de-

fined and how they work together. It also gives

examples of how functionality is distributed

among the modules. Some examples included in

Visual OMT 2.0 are:

Hello Modular World: a very basic sample

Modular Restaurant: based on the sample Res-

taurant FOM in the HLA Standard. This example

illustrates both how one module (Soup) can build

upon another module (RestaurantFood) as well as

how two independent modules, in this case Restau-

rantFood and RestaurantProcesses can stand side

by side.

Sample RPR FOM Extension. This example may

be more difficult to grasp for someone who is un-

familiar with the RPR FOM. Still it represents an

example of how many real-world developers

would use FOM modules.

Figure 8: Example of a global search in Visual OMT 2.0

5.6 Help and explanations

A great advantage of a specialized editing tool as

opposed to general XML editors is that more sup-

port can be added to help the user enter correct

input. Even though XML editors can contain some

support, there are several things they cannot check

and they can never give more help than there is in

the XML schema. A specialized tool like Visual

OMT 2.0 has “tooltips”, help and explanations as

well as GUI components that simplifies editing.

Instead of having to know by heart which data

types there are to choose from, a drop down box

show the alternatives. The GUI also help with ad-

vanced formatting like Dimension default values,

see Figure 9.

5.7 Locating errors in a FOM module

An easy mistake to do when creating a FOM mod-

ule is to create references to non existing objects.

For example, by misspelling a data types name or

defining that an attribute should use a data type

that has not yet been defined and later on forget-

ting to do so. In Visual OMT 2.0 the FOM de-

signer is presented with a list of already defined

data types when selecting a data type for an attrib-

ute or selecting the dimension for an interaction

class. This also incorporates the dependency sys-

tem described in an earlier section. When selecting

a data type for an array, not only data types in the

current module will be available, but all data types

in the current module and its dependencies

As mentioned earlier an easy mistake to do when

creating FOM modules is to create a reference to a

non existing object. This is of course not the only

kind of error that can occur in a FOM module.

Visual OMT 2.0 can identify almost 200 different

types of issues. These have been divided into three

different groups, errors, warnings and best prac-

tice. An error is classified as something that would

make the RTI unable to successfully load the FOM

module such as two object classes with the same

fully qualified name but with different definitions.

A warning is something that is not correct but the

RTI will still be able to load the FOM module, for

example a reference to a non existing data type in

an attribute. Finally best practice is tips for creat-

ing a good FOM, this includes filling out the Iden-

tification table and defining semantics for all your

objects.

Visual OMT 2.0 continuously analyzes the FOM

modules in the project. When issues are found,

they are presented in a to-do list at the bottom of

the screen as shown in Figure 10. This gives the

FOM designer an easy way to identify how many

errors exist in the FOM modules as well as a way

to quickly go to an error by double clicking on it in

the to-do list.

Figure 9: Editing with a dedicated tool versus editing text format

Figure 10: Example of the issues identified in a project in Visual OMT 2.0

5.8 Help with module design

Another way in which a FOM editing tool can help

a FOM designer is by suggesting good default val-

ues. Not only default values for specific things

such as the order type of an attribute but design

choices like which tables is normally best practice

to define in a FOM module. Default values can be

controlled per project so that a training oriented

FOM uses best-effort transportation by default

whereas an analysis FOM defaults to reliable trans-

portation and time stamp order delivery.

Visual OMT 2.0 will also always create an Identi-

fication table in a FOM module, although it won’t

force the FOM designer to actually enter anything

useful.

5.9 Reusing FOM data

Reuse of FOM data in a non specific FOM editing

tool can be tricky, often involving copy of raw text

where care has to be taken to not miss an XML tag

and correctly paste the information in the new

FOM.

Reusing elements from older FOMs is simple in

Visual OMT 2.0. It is possible to open the module

and drag and drop entities like object classes or

data types to other modules.

If you want to have an older FOM in your project

to consult as a reference you can choose to exclude

it from the consistency checking in the project

since such a FOM probably would introduce multi-

ple errors if combined with the other FOMs.

5.10 Ensuring valid HLA 1516-2010 File format

A fundamental requirement on a FOM editing tool

is that it should produce a valid FOM file. A FOM

file has a valid OMT syntax if it validates against

the DIF XML schema defined by the HLA stan-

dard.

In Visual OMT 2.0 this is ensured by using a soft-

ware component for reading and writing FOM files

which is based on this Schema. This also means

that Visual OMT 2.0 easily can handle any

changes to the FOM format by updating the soft-

ware component.

5.11 Handling older HLA formats

With HLA Evolved and two older HLA versions

now available it is often the case that a FOM needs

to be maintained for use in federations using dif-

ferent HLA versions. In Visual OMT 2.0 this can

be solved by maintaining one set of FOM modules

in the latest HLA Evolved format and then export-

ing them to older formats. Export to both HLA

1516-2000 and to HLA1.3 FED allows you to run

any version of the RTI. An overview of this ap-

proach can be seen in Figure 11.

Visual OMT 2.0 also has the ability to import old

FOMs from HLA 1516-2000 meaning you can

rearrange old FOMs into modules making them

easier to understand and maintain.

5.13 Future development

One feature we are looking at adding to Visual

OMT 2.0 in the future is refactoring. This would,

for example, allow a FOM designer to change the

name of a data type and the new name would

propagate to all instances where the old name was

used.

We are also planning to add more analysis for de-

tecting issues within a project. This could also lead

to Visual OMT 2.0 being able to supply the user

with a suggested method of resolving an issue and

then carry it out if the user accepts it.

More convenient methods for importing and ex-

porting data will also be added. One example is the

ability to paste a column of data from Excel into

Visual OMT 2.0. This is very useful when defining

enumerator values for a new enumerated data type.

Figure 11: Handling different HLA formats

5.12 A comparison with other editors

Figure 12 summarizes some functional differences

between editing options. In addition to this cost

may also be considered. A basic text editor like

Notepad will of course be a cheap alternative for

small projects. Larger projects will want to opt for

a dedicated HLA OMT editing tool.

6. NATO Snow Leopard example

This section describes a project where FOM

modules are used. It gives a project overview and

then shows an example of how a real FOM module

looks in Visual OMT 2.0.

6.1 Project overview

The NATO Snow Leopard a.k.a. NATO Education

and Training Network (NETN) is based on

recommendations and federation agreements

developed by MSG-068 (NATO RTO Task

Group). These agreements include a set of FOM

modules that use and extend existing standard

object models, e.g. RPR-FOM and Link 16 BOM.

The basis for the development of the NETN FOM

based on this set of modules are national and

NATO federations and simulation systems

including NATO Live-Virtual and Constructive

Federation (NLVC), NATO Training Federation

(JTF), Joint Multi Resolution Model (JMRM),

German KORA-SIRA (KOSI) federation,

Persistant Partner Simulation Network (P2SN)

federation, French ALLIANCE Federation, and

other simulation systems from Spain, UK, The

Netherlands, Australia, Bulgaria, Romania,

Turkey, USA and Sweden.

Early in the development of the NETN Reference

Federation Agreements it was decided to base the

FOM on standards, best-practices and practical

experience from the participating nations and

organizations. A driving factor in the design of the

FOM was to enable a higher level of

interoperability between the systems and to allow

the use of national simualtion systems in NATO

Computer Aided Exercises (CAX).

6.2 Use of FOM modules

The PRP-FOM v2.0 D17 was selected to form the

basis for representing Ground Truth for both

Platforms and Aggregate Entities. To allow

additional information to be exchanged between

systems the Platform and Aggregate Object

Classes of the RPR-FOM were extended by adding

a NETN-Aggregate FOM Module. This module

subclasses all the platform object classes and the

RPR-FOM AggregateEntity object class.

Another FOM Module called NETN_Logistics was

introduced to allow more advanced cross-

fedederate logistics operations. It also includes

NETN_Facility as a new subclass of BaseEntity.

Although RPR-FOM include some basic support

for logistics MSG-068 recommendation is to

completely replace this with a new way of

requesting and providing logistics services. The

more general "Service Consumer-Provider" pattern

was captured in a separate FOM module and

extentions for logistics services was put in another

Module. The will allow future modules to utilize

the same basic pattern for services whithout

including the Logistics module.

The NETN Reference FOM includes the following

modules:

 RPR-FOM v2.0 D17

 Link 16 BOM

 NETN Service Consumer-Provider

Feature Text Editor XML Editor Visual OMT 2.0

Ensures correct syntax No Yes Yes

Help with semantics No No Yes

Ensures correct references No No Within and between

modules

Checks best practice No No Yes

Graphical visualization No General XML format

graph

Object and Interaction

class trees

Tabular visualization No No Similar to the HLA

standard

Dependency analysis No No Yes, searchable

Search In one module In one module Across several modules

Import/export between

formats

No No Yes

Figure 12: Comparison between FOM editing options

 NETN Logistics

 NETN Aggregate

 NETN Federation Execution Management

The relationship between the different modules can

be seen in Figure 13, a module is dependent on the

modules below it in the diagram.

6.3 Logistics FOM module interactions

Figure 14 shows the Interaction class tree for the

NETN Logistics FOM module as it is displayed in

Visual OMT 2.0. It is easy to see that for example

the NETN_SupplyStarted interaction extends an

interaction class that is defined in another module,

in this case NETN Service Consumer-Provider.

7. Discussion

Some thoughts and challenges that came up during

the development of the tools are summarized here.

7.1 Collaboration and the FOM development

process

Early in the tool design and experimentation phase

we realized that most FOM module editing needs

to be focused around a project consisting of several

modules. The project typically contains some mod-

ules that need to be read-only, from the perspective

of a particular federation. An example of this is

when several developers share FOM modules un-

der development with each other. When a conflict

occurs it is necessary to adjust at least one of the

conflicting modules. In some cases the issue to be

resolved may be in a read-only FOM, often per-

ceived as “somebody else’s” module. In this case it

would be a good idea to generate a “change re-

quest” from within the tool, instead of updating a

read-only module. This is considered for inclusion

in later versions of the tool.

On a higher level the entire collaborative process

of FOM development may be supported by web

based tools. Typical tasks in such an environment

would be to handle suggestions and change re-

quests as described in the previous section. This

may be a future development.

7.2 Ease of use versus advanced features

It is a challenge to design a tool that both correctly

covers the entire standard and, at the same time, is

easy to use for beginners. One example of this is

how the MIM is handled in Visual OMT 2.0. For

the beginner the MIM in itself is not interesting, he

probably just want access to the predefined data

(such as datatypes). To make it easy for a beginner,

the standard MIM is automatically added to all

projects and all modules are by default defined as

dependent upon it. If ease of use was the only de-

sign goal this functionality would be enough, but

an advanced user might want to use a non standard

MIM, which is also supported by the tool, includ-

ing the related error-checking.

7.3 Using the OMT glyph as an icon

Visual OMT 2.0 displays the Glyph of the Identifi-

cation table as an icon in the FOM module over-

view screen. One issue here is that the Glyph can

be any size and any image format. It would be de-

sirable to further standardize the Glyph concept in

the Identification table. This would allow programs

Figure 14: Part of the Interaction class tree for the NETN Logistics FOM

Figure 13 Visualization of dependencies between FOM Modules in the NETN Reference FOM

that handle FOMs to use the glyph as an icon for a

FOM in their GUI. We recommend standardizing

on the GIF, JPG and PNG formats and the size 32

by 32 pixels.

7.4 Attaching Notes to any item

The Notes concept in OMT is difficult to imple-

ment in a straight-forward and user friendly way.

The OMT format is specified using tables, making

it natural to define that it should be possible to

place a note on a column. XML is the format used

to actually save a FOM file. It lacks the notion of

columns. Overall the specified ability to place a

note on anything, including placing a note on a

note, may result in a complex GUI.

8. Conclusion

The FOM, i.e. the information exchange data

model, which is used in a federation is extremely

important from both an interoperability and reuse

perspective. It is considerably easier to make simu-

lations originally based on similar FOMs to inter-

operate. It is also more likely that federates can be

reused in a federation with a FOM that is similar to

their original information exchange data model.

HLA Evolved makes it considerably easier to de-

velop and reuse different aspects of a FOM by

providing the FOM as composable modules.

Reusable FOM modules ideally should be devel-

oped and maintained using a clear and well-

defined process. This can be in a top-down process

by organizations sharing a common need to sup-

port a certain simulation domain. In some practical

cases a really useful block of FOM data may be

produced in a project and then reused on an ad-hoc

basis.

In order to be able to develop FOM modules and to

compose entire FOMs from modules, proper tools

are needed. They should enable the user to get a

clear overview of several combined FOMs, to find

errors and to analyze and resolve conflicts between

modules. Based on the role of each FOM module

in a project the tool should assist a user in keeping

standardized modules untouched while developing

extensions. A tool should also assist a user in

maintaining proper dependencies so that a stand-

alone module remains stand-alone and a dependent

module only depends on the intended modules.

This paper describes how a COTS tool that sup-

ports this has been developed.

An example of more general and more specific

FOM modules that have been developed in the

NATO Snow Leopard federation are also provided.

To summarize, this paper shows how the FOM

module concept can take interoperability and reuse

to new levels, with the ease-of-use and conven-

ience of a graphical FOM editing tool.

References

[1] IEEE: "IEEE 1278, Distributed Interactive

Simulation (DIS)", www.ieee.org,

[2] Vinton Cerf: “Specification of Internet

Transmission Control Program”, RFC 675,

IETF, www.ietf.org, December 1974

[3] J Postel, J. Reynolds: “File Transfer

Protocol (FTP)”, RFC 765, IETF,

www.ietf.org, October 1985

[4] R. Fielding et al: “Hypertext Transfer

Protocol - HTTP/1.1”, RFC 2616, IETF,

www.ietf.org, June 1999

[5] Jonathan B. Postel: “Simple Mail Transfer

Protocol”, RFC 821, IETF, www.ietf.org,

August 1982

[6] IEEE: "IEEE 1516-2010, High Level Archi-

tecture (HLA)", www.ieee.org, To be pub-

lished.

[7] “TENA - The Test and Training Enabling

Architecture, Architecture Reference Docu-

ment” , h t tps : / / www. tena -sda .org/

publ ic_docmanager /userdocument s /

T E N A % 2 0 A R C H I T E C T U R E %

20REFERENCE/TENA%20Architecture%

20Reference%20Document%202002.pdf

[8] Thomas Erl: “Service-Oriented Architec-

ture, Concepts, Technology and Design”,

Prentice-Hall, July 2005, ISBN 0-13-

185858-0

[9] Object Management Group: “Data Distribu-

tion Service for Real-time Systems, v1.2”,

www.omg.org, January 2007.

[10] MIL-STD-6016B, Tactical Digital Informa-

tion Link (TADIL) J Message Standard

(DRAFT) 15 March 2002

[11] Möller, B and Löfstrand, B, “Getting

started with FOM Modules”, Proceedings

of 2009 Fall Simulation Interoperability

Workshop, 09F-SIW-082, Simulation

Interoperability Standards Organization,

September 2009.

[12] SISO, “BOM Template Specification”,

S I S O - S T D - 0 0 3 - 2 0 0 6 , S I S O ,

www.sisostds.org, 31 March 2006.

[13] Tram Chase, Paul Gustavson, Lawrence M.

Root: “From FOMs to BOMs and Back

Again”, Proceedings of 2006 Spring Simu-

lation Interoperability Workshop, 06S-SIW-

115, Simulation Interoperability Standards

Organization, April 2006

[14] SISO, “Standard for: Link16 Simulations”,

S I S O - S T D - 0 0 2 - 2 0 0 6 , S I S O ,

www.sisostds.org, May 2006

[15] David Hasan: “Using HLA-Evolved Modu-

lar Object Models for NASA Constellation

Simulation-to-Simulation Interface Specifi-

cations”, Proceedings of 2010 Spring Simu-

lation Interoperability Workshop, 10S-SIW-

012, Simulation Interoperability Standards

Organization, April 2010.

[16] Björn Löfstrand, Rachid Khayari, Konradin

Keller, Klaus Greiwe, Peter Meyer zu

Drewer, Torbjörn Hultén, Andy Bowers,

Jean-Pierre Faye. “Logistics FOM Module

in Snow Leopard: Recommendations by

MSG-068 NATO Education and Training

Network Task Group”, Proceedings of 2009

Fall Simulation Interoperability Workshop,

09F-SIW-076, Simulation Interoperability

Standards Organization, September 2009.

[17] IEEE: “IEEE 1516.3-2003 IEEE Recom-

mended Practice for High Level Architec-

ture (HLA) Federation Development and

E x e c u t i o n P r o c e s s (F E D E P) ” ,

www.ieee.org

[18] Joe Sorroche, Riley Rainey: “Directed En-

ergy Modeling and Simulation Experiment

Results”, Proceedings of 2007 Spring Simu-

lation Interoperability Workshop, 07S-SIW-

042, Simulation Interoperability Standards

Organization, April 2007.

Author Biographies

BJÖRN MÖLLER is the vice president and co-

founder of Pitch, the leading supplier of tools for

HLA 1516 and HLA 1.3. He leads the strategic

development of Pitch HLA products. He serves on

several HLA standards and working groups and

has a wide international contact network in simula-

tion interoperability. He has twenty years of ex-

perience in high-tech R&D companies, with an

international profile in areas such as modeling and

simulation, artificial intelligence and Web-based

collaboration. Björn Möller holds an MSc in com-

puter science and technology after studies at

Linköping University, Sweden, and Imperial Col-

lege, London. He is currently serving as the vice

chairman of the SISO HLA Evolved Product De-

velopment Group.

FREDRIK ANTELIUS is a Lead Developer at

Pitch and is a major contributor to several com-

mercial HLA products. He holds an MSc in com-

puter science and technology from Linköping Uni-

versity, Sweden.

MARTIN JOHANSSON is Systems Developer at

Pitch Technologies and is a major contributor to

several commercial HLA products such as Pitch

Developer Studio and Pitch Visual OMT 2.0. He

studied computer science and technology at

Linköping University, Sweden.

BJÖRN LÖFSTRAND is the Manager of

Modeling and Simulation Services at Pitch

Technologies. He holds an M.Sc. in Computer

Science from Linköping Institute of Technology

and has been working with HLA federation

development and tool support since 1996. Recent

work includes developing federation architecture

and design patterns for HLA based distributed

simulation. He leads the MSG-068 FOM and

Federation Design (FAFD) technical subgroup.

ÅSA WIHLBORG is Systems Developer at Pitch

Technologies and a major contributor to commer-

cial HLA products such as Pitch Visual OMT 2.0.

She studied computer science and technology at

Linköping University, Sweden.

