
Simulating Rail Traffic Safety Systems using HLA 1516

08E-SIW-069

Fred van Lieshout
Ferdinand Cornelissen

Jan Neuteboom
Atos Origin Technical Automation

Papendorpseweg 93
3528 BJ Utrecht, The Netherlands
fred.vanlieshout@atosorigin.com

ferdinand.cornelissen@atosorigin.com
jan.neuteboom@atosorigin.com

Björn Möller

Pitch Technologies
Nygatan 35

SE-582 19 Linköping, Sweden
+46 13 13 45 45

bjorn.moller@pitch.se

Keywords:
HLA, IEEE 1516, Rail Traffic Safety Systems, Rail Infrastructure, Simulation

ASTRACT: The High Level Architecture (HLA [1]) has its origins in the defense sector and was primarily
used to simulate vehicle and troops movements. However, the HLA is not limited to this area. It is very suitable
for simulating rail traffic, in a simulated rail infrastructure, and the rail traffic safety systems that control that
same infrastructure. By doing so, one is able to test the rail traffic management systems that act at the operator
level.

Although it is not the first time that a simulator is built for the rail traffic domain, the simulator described in
this paper is unique in its modularity, scalability and flexibility, thanks to the use of HLA. It is flexible because
each safety system is implemented as a federate. This means that large rail traffic areas can be simulated by
simply instantiating the required number of federates, each protecting their own part of the rail infrastructure.
Just as in reality. That said, plus the fact that using HLA allows distribution over multiple PC’s, makes this
simulator scalable.

This paper also describes which objects are simulated, which object attributes are published to the HLA Run
Time Infrastructure (RTI) and what kind of design decisions were made during the development of the
simulator.

1 Introduction

As in any other engineering area, modeling and
simulation is an important tool in the railroad industry.
And just like in many other areas there exist a large
number of models within different industries and
departments, but the power of making several simulations
interoperate hasn’t been taken to its full potential. Some
examples of where modeling and simulation is used are
for training of train operators, for evaluation of different
designs and for test and verification purposes. This paper
focuses on a simulator that is used by the Dutch railways
to test their applications before being installed in the field.
It describes how HLA has been successfully applied to
create a modular, flexible and scalable architecture for
simulation interoperability. As a result, it is now possible
to test more complex configurations with combinations of
multiple simulated safety systems. The benefit of this is
that the test environment resembles the real world
situation more closely and the correct operations can be
verified to a higher degree than before.

1.1 The safety systems

Rail traffic safety systems ensure that only an authorized
train may enter a part of the rail infrastructure at a given
time. This is usually achieved by placing signals at the
entry of a specific path of the rail infrastructure (see
Figure 1). Dividing the path into sections and protecting
each section with a signal increases the capacity of the
railroad because multiple trains can make use of the
available rail infrastructure, without the danger of
collisions.

Figure 1: rail infrastructure example

When a train occupies a section, the signal shows red to
indicate to another train driver that it is not allowed in that
section. Of course this is a very simplistic description, but
it is not too hard to imagine because of the resemblance
with the traffic lights at ordinary roads.

There are many different rail traffic safety systems,
developed in different countries and by various
manufacturers. Each country has their specific
requirements and each manufacturer developed their
system as they thought was most appropriate. It is only
until recent times that in Europe various countries have
come to an agreement to implement one standard system
called ERTMS, which stands for European Rail Traffic

Management System. But it will take years before that
system will be implemented and until that time there will
be a variety of systems that has to be dealt with.

Below is a brief summary of some of the safety systems
that are in use by the Dutch railroads.

NX: The Entrance/Exit safety system [2], abbreviated as
NX, has been developed in North America and was
adopted by the Dutch railways to secure their railroads.
As the name implies, only one train can enter a section
and the signal will only allow the next train until the first
has left (exit) the section. It’s a fail-safe system,
implemented by electric relays. In The Netherlands a
large number of railway yards is still secured by NX safety
systems.

VPI: Vital Processor Interlocking [4] can be seen as the
successor of the NX safety systems. VPI is a fail-safe,
microprocessor-based control system designed to meet the
needs of interlocking control for mainline railroads and
mass transit applications. VPI essentially executes a
program that consists of Boolean formulas that expresses
dependencies between objects such as signals and points.
Each railway station is supplied with its own set of
formulas, based on the particularities of the rail
infrastructure is has to secure.

EBS: Elektronische Beveiliging SIMIS, where SIMIS stands
for ‘Sicheres Mikrocomputersysteem Siemens’. It is a
safety system that is functionally equal to NX and VPI. A
variety of dialects of this system exists, each with a
slightly different mechanism of handling logical safety
rules.

ERTMS: European Rail Traffic Management System [3],
a pan-European standard to be implemented over the next
decades. At this moment only a small amount of the rail
infrastructure is secured by ERTMS.

1.2 Automatic train security

On many railroad tracks a system called ‘Automatic Train
Interference’ has been implemented. This system is
activated when a train driver ignores a speed signal or red
sign. The speed of the train will automatically be reduced
and eventually the train will be stopped. For our
simulation purposes, it has been decided that this
functionality will not be considered.

1.3 Managing the traffic

There are a number of systems, in a layered architecture,
to control the flow of trains that enter and leave railway
stations (Figure 2).

Figure 2: layered architecture

The functionalities captured in the components of this
layered architecture range from rail utilization safety,
automated train numbering, and train scheduling and
planning.

1.4 Evolution of rail traffic management systems

Each of the components contained within the rail traffic
management system tends to have a long development
history: an increased utilization of the rail infrastructure
leads to a continuous development of these components,
while still retaining a guaranteed reliability. Furthermore,
components are usually built by different manufacturers.

In order to guarantee a certain level of reliability, as well
as to allow flexibility in the delivery of new versions of
components, each component has to be properly tested
before being integrated into the final operational
environment. Given the overall complexity of the rail
management system, this is not a straightforward task,
and using simulation as the basic means of testing may be
the only way to cope with it.

2 Modeling the real world

First it has to be decided which of the systems need to be
simulated in order to meet the test goals. Since the safety
systems themselves are generic, while they are configured
with data that is specific for the rail infrastructure that
needs to be secured, we decided to simulate the lower two
layers, while maintaining the real systems in the upper
two layers in the test environment. They are the ‘systems
under test’.

2.1 Federates

Because we want to have a model of the real world that
should be intuitive to both the developers as well as the
users of the simulator, we decided to have:
- A federate for each real-life instance of a safety

system;
- One federate to simulate the behaviour and state of the

rail infrastructure;
- One to simulate the trains; and
- One to control the whole simulation.

The latter also contains the Graphical User Interface,
which provides the tester with the means to monitor and
manipulate the simulation during execution. This is useful
to, for example, introduce a signal or point machine
failure and test the behaviour of the control and
management systems. It can also be used to teach the
traffic controller on incident scenarios.

The control federate is also used to create and remove
instances of simulated trains in the federate that controls
the simulated trains. All of the above federates are
implemented as executables and together they form the
HLA federation (Figure 3).

Figure 3: federation

The simulated safety systems connect to the control
systems and use the same interface as their real-life
counterparts, which usually is a protocol over TCP/IP and
Ethernet.

Figure 4: real world + simulated systems

2.2 Simulated Objects

It is quite straightforward to find the objects that have to
be simulated, when using an Object Oriented approach.
While keeping the requirements in mind, we came up
with the following main objects (and their attributes):
- Trains (head and tail position, length, speed, target

speed, number);
- Routes (id, from signal, to signal);
- Points (id, position, required position, failure status);
- Sections (id, occupied status, failure status);
- Speed signs (allowed speed);
- Crossings (id, status, failure status); and
- Power supplies (failure status).

Simulated Infrastructure

Simulated Safety Systems

Control Systems

Management Systems

Infrastructure

Safety Systems

Control Systems

Management Systems

HLA Run Time Infrastructure

Simulated
Trains

Simulated Safety
System B

Simulated Safety
System A

Simulated
Infrastructure

Control
GUI

By using an object hierarchy, we were able to structure
approximately 20 objects into a logical class diagram. The
next step was to translate this object hierarchy into the
HLA Federation Object Model (FOM). For this purpose we
used the ‘Visual OMT’ editor from Pitch Technologies
(Figure 6), which helped in visually defining the object
tree.

The spatial representation of trains is somewhat different
from what is usually seen in for example aircraft
simulation. A train has a considerable linear extension,
which means that while the front end has left the platform
the rear end may still be at the platform. This is somewhat
similar to convoy models used in defense logistic
simulations. The environment where trains move is
somewhat easier to model than traditional environments.
The railroad system is described as a set of interconnected
links. In fact, the infra federate is capable of simulating all
rail infrastructure in the Netherlands, which consists of
more than 2 800 km of rails, more than 8 000 switches
and roughly 10 000 signals.

2.3 Interactions

All communication between federates is either via object
reflection, or via interactions. The latter are used to
implement communication between simulation
components, such as in commanding signals or in
querying the modeled infrastructure.

The implemented interactions can be divided into three
categories. In the first category we find all interactions
that are related to command & control, e.g. instructing
trains, infrastructure or safety systems, as well as
monitoring the situation of the simulated trains and
infrastructure. Examples of such interactions are:
- ElementCommand: issues a command to an element

of the infrastructure such as a point machine or a
signal;

- TrainCommand: issues a command to a train /
driver.

Most interactions are usually a result of, or are in direct
relation to, commands that are issued from the top two
layers of the rail management system.

The common denominator of the second category of
interactions is the fact that they are all related to driving
trains. These interactions provide creation, destruction,
speed, position and status modifications based on
interaction between the trains schedule, the infrastructure,
and the safety systems. The following interactions are
exemplary for this category:
- AllowedSpeed: an interaction used in determining the

maximum speed a train is allowed to travel on a track,

given the signs, signals and order speed dictating
elements;

- TrackOccupied: specifies if a certain section of the
rail tracks is occupied or not. This triggers the safety
systems;

- NextTrainStop: provides the location and distance to
the next stop the train should stop;

- NextRailTrack: used in providing the next part of the
railtrack the train is driving on, given the current
position and status of the infrastructure.

Figure 5: interactions between train schedule,
infrastructure and safety system

A third category is related to interactions for simulation
control such as introducing system malfunctions, status
changes or adaptations to the infrastructure, train schedule
or mechanisms of the safety systems:
- PlaceTrain: places a new train on the simulated rail

tracks;
- RemoveTrain: removes the train from the simulation;
- ModifyElement: changes the characteristics of a

certain infrastructure element.

3 Design decisions

3.1 Code generation

To speed up the development of the simulator, and to
quickly adapt to alterations in the FOM, a code generator
was developed that reads the FOM file – created by the
Visual OMT tool – to generate C++ objects and a ‘generic
framework’ of object reflection and interaction handling.
It is one of our major design decisions made early on in
the project to extend the level of generality of HLA into
the communication layer of each federate. This resulted in
the aforementioned generic framework. This has resulted
in a major speed increase in the development of each of
the federates. Furthermore, it provides a high flexibility in
adapting to changes in the FOM during the whole project
lifecycle.

A further advantage of the code generator and the
generality of the FOM-editor is that it can be used in future
HLA projects as well, since no domain-specific
information is needed to generate the code.

Train Infra

position

Safety

track occupied

Figure 6: screenshot of FOM-editor

3.2 Federation time management

Because the simulator connects to real world systems, it
was decided to use a fixed time step that is synchronized
to the wall clock time. Because of the flexibility offered
by HLA , it is always possible to change this in a future
version and support, for instance, as fast as possible
simulation.

The Control GUI is a separate federate and responsible for
starting the other federates, based on a central
configuration file. The Control GUI offers the tester
functions to start trains (typically just one or two trains,
with the option to run a complete schedule with f.i. twenty
trains), introduce system failures and pause, resume and
restart the simulation. The latter functions are
implemented by using HLA synchronization points.

3.3 Transfer of ownership and DDM

At this moment, the simulator does not make use of
features like transfer of ownership and dynamic data
management. However, the design for a future version
could be modified so that f.i. a signal's state is owned by
the appropriate simulated safety system rather than the
infra simulator. In the current version the safety system
sends an interaction to control the state of the signal
object.

4 Future

4.1 Visualization

The Control federate provides an event-logging window
on the graphical user interface. In this window all
significant events that appear during the simulation are
logged. The user can define the level of detail to be shown
per federate type, by selecting and enabling the available
modes: errors, warnings, information, debug details.
Another window shows the actual status of the simulation
objects, such as trains and point machines.

An additional federate is the visualization module. This
provides a dynamic graphical view of the status of the
simulation, which is more intuitive to the end user. One or
multiple segments of the railway infrastructure are shown,
including tracks, signals and safety sections. Sections that
are occupied by a train light up yellow. This functionality
facilitates the tester to compare the train controller view
from the control center monitors with the situation in the
simulated environment, at a simple glance.

The visualization has been extended with a command
option. By clicking at a particular signal it’s state can be
changed, and a track can be set to left- or right leading.
This can be used by the tester to interfere in the system
and to adjust settings to simulate malfunctioning and
disturbances. This also shows the power of HLA , since it
makes no difference whether the interaction originates
from the simulation controller or from another federate.

Figure 7: screenshot of visualization federate

4.2 Simulating Control and Management Systems

A subsequent step will be to simulate the control layer
and the management layer as well. This will provide the
user with a complete train traffic control system “in a

box”. In other words: a complete simulation environment
that can be run on a single laptop. Such a system can be
used for training purposes for train traffic controllers to
get familiar with the system or to exercise incident
scenarios. It can also be used to study future changes in
infrastructure topology, to measure capacity of a station
yard or to prepare for major maintenance activities.

4.3 Integration of third-party simulators

The HLA allows us to integrate software modules from
another manufacturer into the federation. This way it is
possible to reuse proven functionality for a specific safety
system simulation in our federation environment.

In order to simulate the behaviour of a particular safety
system, a stand-alone simulator had already been
developed. As a proof of concept we wanted to integrate
this simulator without modifying the existing code.
Fortunately, this existing simulator has a TCP/IP command
and logging interface. So we developed an HLA adapter to
connect and integrate the external software package into
the existing federation. Control of the new federate is
provided by the general graphical user interface of the
simulation system. This whole exercise turned out to
work just fine.

5 Conclusion

The HLA is a powerful means to develop a modular and
scalable simulator in an efficient way.

The decoupled federates make it easy to construct
independent building blocks. This allowed the project to
do a number of phased deliveries, each phase providing
additional functionality in a new federate.

The decoupling also allowed the engineers to work in
parallel, without interference between the multiple
building blocks. The Federate Object Model can be
considered as the glue.

For a particular test goal, the set-up of the environment is
scalable because the type and number of simulated safety
systems can be adjusted during the preparation phase.

It can be determined by the user which part of the system
layers will be simulated and which part consists of the
real control systems. This boundary may be shifted by the
user, making the system extremely flexible for testing in
different configurations.

6 References

[1] IEEE 1516 Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA), ISBN 0-
7381-2620-9.

[2] ENTRANCE-EXIT ROUTE INTER-LOCKING
CONTROL APPARATUS, US Patent 2567887.

[3] European Rail Traffic Management System,
http://www.ertms.com

[4] Vital Processor Interlocking Control System,
Product Overview Manual, P2511G, ALSTOM
Signaling Inc.

Author Biographies

FRED VAN LIESHOUT is a technical specialist at the
Technical Automation (TA) department of Atos Origin
Nederland BV. He is responsible for the general
architecture of the simulator. Fred has over twenty years
of experience in professional software development.
Together with Ferdinand Cornelissen, he gives direction
to a group of people specializing in simulation,
visualization and training systems (SVTS).

FERDINAND CORNELISSEN is a technical specialist
at the Technical Automation (TA) department of Atos
Origin Nederland BV. Ferdinand is in charge of the
design for the rail infrastructure simulation federate.
Ferdinand holds an MSc degree in Cognitive Artificial
Intelligence.

JAN NEUTEBOOM is project manager at the Technical
Automation (TA) department of Atos Origin Nederland
BV, an international information technology services
company. He is in charge of the project that delivers the
simulator described in this paper. He is experienced in
managing multi-disciplinary projects and coaching.

BJÖRN MÖLLER is the Vice President and co-founder
of Pitch, the leading supplier of tools for HLA 1516 and
HLA 1.3. He leads the strategic development of Pitch
HLA products. He serves on several HLA standards and
working groups and has a wide international contact
network in simulation interoperability. He has twenty
years of experience in high-tech R&D companies with an
international profile in areas such as modelling and
simulation, artificial intelligence and Web based
collaboration. Björn Möller holds an MSc in Computer
Science and Technology after studies at Linköping
University, Sweden and Imperial College, London.

