
	

Building Scalable Distributed Simulations:
Design Patterns for HLA DDM

Björn Möller

bjorn.moller@pitch.se

Fredrik Antelius
fredrik.antelius@pitch.se

Martin Johansson
martin.johansson@pitch.se

Mikael Karlsson

mikael.karlsson@pitch.se

Pitch Technologies
Repslagaregatan 25

582 22 Linköping, Sweden

Keywords: Scalability, HLA, DDM, Design patterns

ABSTRACT: Over the last decades the size of scenarios in distributed simulation has grown considerably, for example
in defense training. There is also a demand for larger number of federates within exercises. This means that federation
scalability is an area of growing importance. The developers of HLA foresaw this and introduced not only class-based
filtering, but also the HLA Data Distribution Management (DDM) for instance filtering. This is a very general and flexible
mechanism for filtering. The challenge for many beginners has been to understand DDM and to develop efficient designs.

This paper presents some design patterns for DDM and discusses their pros and cons as well as implementation and
efficiency. One design pattern is Uniform DDM where all attributes of an object class have the same DDM dimensions
available. This makes the use of DDM much easier in federations. Design patterns for filtering based on static properties
(like the fuel type of a vehicle) and dynamic properties (like the position of a vehicle) are then covered.

A number of best-practices are also discussed, for example FOM design, handling of objects going in and out of scope
as well as the usefulness of advisories. Life cycle challenges, like how to mix federates with and without DDM support
are covered.

Finally, some thoughts are given on the design of general and reusable DDM schemes. As an example a number of DDM
schemes are proposed for the RPR FOM.

	

1. Introduction
During the last decade, there has been a growing demand
for scalability in distributed simulations. Defense
simulation scenarios have grown and become more
complex, for example in international civilian-military
exercises. The number of simultaneous platform trainers in
the same federation is also growing. While early High-
Level Architecture (HLA) [1] integrations focused on
integrating existing monolithic simulations, today
federations are developed in a more modular way, using a
larger number of smaller components. And federations
developers, like any other community, are always trying to
push the envelope.

The lack of scalability, from a bandwidth and CPU
perspective, was one of several reasons for developing
HLA as a successor of Distributed Interactive Simulation
(DIS) [2]. Today, an increasingly common architectural
pattern for reusing existing DIS simulations is to create an
HLA backbone to which islands of DIS simulations are
connected.

1.1. Where are the bottlenecks?

When building large distributed simulations there are many
factors that can limit the scalability. In practice, two of the
most common are:

Network bandwidth limitations. While Gigabit networks
are now common in many Local Area Networks, long
distance links still have limited capabilities. Simple math
shows that a one-megabit link cannot reasonably carry
more than 1250 updates/second of 100 bytes (a common
update size for updating entity positions).

CPU limitations. In a distributed simulation it is necessary
both to produce data, and to receive and process data from
other simulations. Many simulations have limited
capability for processing incoming updates, in particular if
this feature was added later, rather than in the original
design of the system. This problem gets worse as the
federation grows.

Consider ten simulations that send 1000 updates/second
each. If every simulation subscribes to all of the shared
information, they will thus receive 9000 updates/second.
Now consider increasing the number of simulations to 100.
They will now receive 90 000 updates/s while still only
sending 1000 updates/s. The bottleneck for processing
incoming data is usually CPU, although graphical sub-
systems and databases may also be a constraint.

What program code that causes the CPU constraint is
generally not very well understood. Many developers
believe that, when bandwidth is abundant, the processing
done by a communication framework, like an RTI, is

extensive compared to the simulation model. In reality,
very little CPU is used by the RTI to transfer information
from the network to the receiving simulation. In the next
step, for example when a new aircraft position is received,
extensive processing may be needed for determining the
relative position and angle of that aircraft and all other
aircrafts.

Understanding how and when incoming updates are
processes may be crucial for optimizing a federation. In
some cases, “lazy” strategies may work well, like avoiding
calculations until data is actually needed, or until all data
for a particular time frame has been received.

1.2. General approaches for improving scalability

There are a number of general approaches for increased
scalability. The most obvious one, and easy to implement,
is to increase the available bandwidth and CPU resources.
Another is to refactor and optimize the system code
implementation. Optimized federation design and smart
use of services for distribution of data will also increase
performance and scalability by allowing infrastructure
implementations to perform sender-side filtering and other
dynamic optimizations during runtime.

For bandwidth limitations, there are also some common
approaches, like compression. This can be handled by the
network equipment, or by the sending and receiving CPU.
In the latter case, some CPU processing is traded for
increased bandwidth.

Bundling is another approach, where several messages are
sent in one bundle. This reduces the impact of the
networking overhead, since it takes less effort to send ten
messages of 100 bytes bundled together as one single
1000-byte message, compared to sending them separately.

In some network topologies it is possible to replace
networks hubs, where all local systems share the same
bandwidth, with switches, where each combination of
senders and receivers can use the full bandwidth.

Beyond these general approaches it is hard to achieve any
optimizations without deeper insights into the information
exchange, for example what information that is needed by
each simulator, and what the characteristics of the
simulation data are.

1.3. Add domain specific information for scalability

If more domain specific information is available for the
filtering, better scalability may be achieved. The most
obvious example is the publish/subscribe scheme used in
HLA Declaration Management (DM). Each HLA federate
subscribes to the object classes and attributes it is interested
in. The RTI only delivers updates for a particular class and
attributes to interested federates. The same scheme is also

	

used for interactions. This scheme improves scalability
when different federates have different interests. If all
federates subscribe to all classes, little optimization can be
achieved.

To further optimize the information that is delivered to
each federate, it may be desirable to deliver data only for a
subset of the instances of a given class. An aircraft
simulator may only be interested in other aircraft in the
same geographical area. A command and control
simulation may only require the positions of ground
vehicles belonging to a certain force. If such criteria can be
provided to the RTI, it is possible to reduce how much data
that a federate needs to process and how much data that
needs to be delivered over the network. There is a service
group called Data Distribution Management (DDM) in
HLA that provides this type of filtering. This paper seeks
to describe how to use DDM in practical applications and
discuss the optimal way to use it.

It shall also be mentioned that there are several other
domain-specific approaches. One example is dynamic
aggregation and de-aggregation. In this case we chose to
describe a number of entities as an aggregate, for example
a platoon, battalion or brigade. When required, for example
during a particular phase of the scenario, the aggregate is
de-aggregated into a larger number of entities. This
assumes that not all aggregates need to be de-aggregated
all of the time, in which case no additional scalability is
gained. Aggregation and de-aggregation is extensively
used in command and control exercises.

Another example is to use predictive techniques like dead-
reckoning. A sender can avoid sending messages when
dead-reckoned values, on the receiver side, will be close
enough to the real value. This is used in the DIS and Real-
Time Platform Reference FOM (RPR FOM) [3,4]
standards for the exchanging spatial data for physical
entities.

2. Overview of HLA DDM
This section contains a brief introduction to HLA DDM,
that also forms a basis for the design patterns.

2.1. General principle

The HLA Data Distribution Management services enables
developers of a federation to perform filtering on any data
that they need. Figure 1 shows how DDM extends upon
class-based subscriptions.

Figure 1: Subscription without and with DDM

If class-based subscriptions are used, a federate can choose
to subscribe, for example, to all cars, but avoid to subscribe
to aircrafts. When DDM is added, the federate can
subscribe to diesel cars only, or cars in a selected
geographical area. In the first case, filtering is done based
on a static property of a car instance. In the second case,
filtering is done based on a dynamic property of a car
instance.

2.2. The normalization function

The key to understanding DDM is the Normalization
Function. The purpose of the Normalization Function is to
map any domain specific data in a federation into data with
a generic format, in this case integer ranges, that the RTI
can use. The RTI cannot reasonably be required to have
any knowledge about a particular application domain.
Detailed aspects like data types, enumerations, geospatial
positioning need to be hidden. The usage of the
Normalization function is shown in Figure 2.

Figure 2: The Normalization function

The Normalization function takes input data, which could
be attribute values, parameters, or any variable in a
program, and converts it into an integer range in a user-
defined Dimension. It is up to the developer to specify and
implement a normalization function that meets his needs.

Consider the case of different types of fuel. The developer
can introduce a Fuel Type Dimension. All types of fuel that

	

are used are then mapped into Ranges in this dimension, as
shown in figure 3. When sending updates and interactions,
or when subscribing, a DDM Region is used which
specifies one or more Ranges, each one related to a
Dimension.

Figure 3: Sample Regions in the Fuel Type Dimension

In the left part of Figure 3 we can see that Gasoline is
specified as the range [0..1), meaning that the range goes
from 0 up to, but not including, 1. Diesel is specified as the
Range [1..2). The value goes up to 4, which is the
Dimension Upper Bound. The right part of Figure 3 shows
regions that are used for subscribing, which will be covered
in the next section.

2.3. Filtering at runtime

For each attribute and interaction class that needs to use
DDM, the available Dimensions must be specified. Figure
4 shows how the Fuel Type Dimension is specified for one
attribute of the Car class.

Figure 4: Specifying available dimensions

To perform filtering at runtime, Regions	must be used as
follows:

For the federate that updates an attribute (or sends an
interaction), a Region shall be associated. As an example,
when updating an attribute of a car, the Diesel Region (see
Figure 3, left side) could be specified.

For the federate that subscribes to that attribute (or
interaction), a subscription Region shall be provided. As an
example, the Gasoline & Diesel Region (see Figure 3, right
side) can be used.

The RTI will then compare these Regions when the update
is sent. If the Regions of the update and the subscription
overlap, then the update will be delivered.

To conclude, the DDM services enable federation
developers to filter on any data that they have available.
Any data can be used as input to Normalization Functions,
which are used to determine Regions in one or more
dimensions. The subscription requirements, expressed as
Regions, are compared to the Regions of the updates or
interactions.

2.4. Scope and Advisories

Consider a federation using DDM, where a federate that
displays a map subscribes to gasoline & diesel cars. The
federate then changes the subscription to gasoline cars
only. This means that no more updates are received for
diesel cars. This is known as the diesel cars going out of
scope. All these cars will now freeze if displayed on a map
display. In order to make it easier for the map display
federate to handle this, for example by removing, or
greying out these cars on the map, the RTI sends out-of-
scope callbacks to the federate. Should they later come into
scope, there are corresponding in-scope callbacks. These
callbacks are called advisories. The updating federate gets
the turn-updates-on and turn-updates-off advisories, to
let it know if there are any federates that will receive any
updates that it makes. In the above example, out-of-scope
happens since the subscription region was changed. It may
be just as common that an object and its attributes go out
of scope since the updating federate changed the associated
DDM regions.

2.5. Why isn’t DDM more widely used?

DDM has proven very useful in some large federations. All
major RTIs support it. Still, it is not extensively used. Some
reasons for this may be:

• Many modest-size federations do not have a scalability
problem.

• Federations with legacy simulations, where the source
code may not be available, cannot implement DDM in

	

all participating federates. This limits the degree of
filtering that can be made and thus the value of DDM.

• The DDM configuration – dimensions, ranges and
normalization functions – needs to be agreed upon in
the entire federation. This limits the opportunity to
reuse a federate in a different federation, or at least
requires coordination across organizations or
standardization.

• It is not very clear from the HLA specification, or other
documents, how to implement good DDM. The key to
a good DDM design is the normalization function,
which only has a short and formal description in the
standard.

• The most commonly used reference FOM in the
defense domain, the Real-time Platform Reference
FOM (RPR FOM), does not provide any Dimensions or
Normalization Functions. One explanation for this is
that the RPR FOM maps to the older DIS standard,
where no DDM is available.

The authors of this paper hope to make some
improvements with respect to the two latter reasons.

3. Design Patterns for DDM
Design patterns are the re-usable form of a solution to a
design problem. The idea was first introduced by the
architect Christopher Alexander [5] for architecture and
urban design. He describes a pattern as follows: “Each
pattern describes a problem that occurs over and over again
in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the
same way twice.” The concept of design patterns has since
been used in many disciplines, not the least computer
science, where it has made a big impact through the works
of Erich Gamma et.al., also known as the “Gang of Four”
[6].

3.1. Two general recommendations

Before looking at the design patterns, two
recommendations are provided. The first and most
important recommendation to DDM designers is to keep
the DDM design simple. If just one simple Dimension
with ten regions is used, and the data is evenly distributed
across these regions, there is a potential of removing, on
average, 90 percent of the incoming data for each federate,
which means a big leap in scalability. This assumes that the
most optimal Normalization Function is used for the
particular domain and scenario.

A second, related recommendation, is to avoid inventing
“nice-to-have” DDM schemes in a federation. Make sure
that the design patterns truly divide the simulation data

space into partitions that are meaningful to participating
federates. Each additional DDM scheme that is required in
a federation imposes some work on federate developers.

3.2. Pattern 1: Uniform DDM

Let’s assume that we use different Dimensions and/or
Normalization functions for each attribute of an object
class. The result will be that different attributes will go in
and out of scope at different times. This becomes very
complicated to handle in a program. Parts of the remote
object are up to date and parts are out of date. The parts that
are up to date varies all of the time. A clearer design is
achieved if all attributes go in and out of scope at the same
time. The design pattern Uniform DDM is defined as
follows:

“All attributes of a given object class shall have the same
available Dimensions. Federates that update any of these
attributes, shall provide regions for all Dimensions, using
the Normalization Function associated with each
attribute.”

For the Fuel Type example this means that the entire Car
instance, with all attributes, will be either in or out of scope.

3.3. Pattern 2: Static DDM

The Fuel Type pattern, described in the previous chapter,
is a good example of the Static DDM pattern. There is a
fixed set of regions along one Dimension, in this case
regions for Gasoline, Diesel, Ethanol and Natural Gas
along the Fuel Type Dimension. These regions are never
modified. Each Car instance is associated with one region.
This association never changes.

Another example is the Force Identifier in the RPR FOM.
Platform instances can be associated with Regions
connected to the Force Identifier Dimension. It will then be
easy to subscribe to entities that are associated with the
Friendly, but not the Opposing forces.

The Static DDM pattern, when applied to a class, is defined
as follows:

“A fixed set of Regions with static Ranges are used. The
object instance attributes are associated with the same
Region throughout the federation execution.”

This pattern is very efficient since there is no need for the
RTI to recalculate the region overlaps after the initial
calculation. The limitation is that the Normalization
Function needs to be based on an input variable that is
constant, like the fuel type of a car.

3.4. Pattern 3: Dynamic Checkerboard DDM

In many cases, we want to filter on geographical position.
Since the position of a car is not expected to be constant
during the federation execution, we cannot use the previous

	

design pattern. For best efficiency we still want to use a
fixed set of Regions. We design it so that it creates a grid
or a “checkerboard” across the map, as shown in Figure 5.

Figure 5: Checkerboard DDM regions

In this case we use a four by four grid and get sixteen
Regions, from [0..1) to [15..16). Each Car instance is
associated with a Region based on its position. A
subscribing federate can select which Regions that it is
interested in. Figure 6 shows how a car is associated with
square 5. A federate has a subscribing region of square 0,
1, 4, 5 and will thus receive updates for that car.

Figure 6: Checkerboard regions for updates and

subscriptions

The Dynamic Checkerboard DDM pattern, when applied
to a class is defined as:

“A fixed set of Regions with static Ranges are used. The
object instance attributes are associated with one Region
at a time. This association may change throughout the
federation execution.”

This patterns handles input variables that change over time,
like the position of a car. Even with modest grid sizes, the
filtering can be very powerful. A ten by ten grid can give
an average update reduction of 99 percent. The
recalculation of the Region overlap is usually very limited,
and is caused by federates changing their subscriptions.
You may also design other sets of static Regions, for
example the States of USA.

The limitation is that it may be difficult to design a grid that
fits any scenario. The example in Figure 5 has one square
(number four) that contains San Francisco, which could be
expected to contain considerably more cars than other
squares.

3.5. Pattern 4: Dynamic Floating DDM

In order to make the filtering more exact than with the fixed
checkerboard grid, we can tailor the region to each actual
car. We will now introduce one Latitude Dimension and
one Longitude Dimension. We may for example use a
Normalization Function that maps a latitude range to a
Latitude dimension with a Dimension Upper Bound of 100,
i.e. values of [0..100). Each car is associated with its own
Region that is constantly updated to match the position of
the car. This is shown in Figure 6.

 Figure 7: Dynamic floating regions

In the figure we can see two smaller Regions associated
with two cars that move. There is also a larger Region, used
by a subscribing federate. There is an overlap between the
subscribing Regions and the two Regions associated with
the cars. Note that the RTI has no insight in exactly where
in the updating Region a car is located. If there is even the
slightest overlap between the Regions of the updating
federate and the subscriber, updates will be passed to the
subscriber.

	

The Dynamic Floating DDM pattern, when applied to a
class is defined as:

“One Region per object instance is used. The attributes of
the object instance are associated with this Region. The
Ranges of this Region may change throughout the
federation execution”.

Determining the size of the Regions used when updating
the cars may be a challenge. They should be reasonably
large, so that we do not need to modify them too often. At
the same time, they should be kept small, in order to get
higher accuracy when another federate subscribes to a
region.

As a rule of thumb, consider the update rate for the cars and
make sure that the regions are not updated more often than
this, since changing the filtering conditions more often than
sending data is suboptimal. However, the biggest limitation
with this design pattern may be that it uses a lot of Regions
where the Ranges are frequently recalculated. This may
cause recalculation within the Local RTI Component
across all federates.

3.6. Comparison

The following table summarizes the three design patterns.

Pattern Instance
Attributes

Regions

Static DDM Statically
associated with one
region

Fixed set of
regions with
static, predefined
ranges

Dynamic
Checkerboard
DDM

Associated to one
region at a time.
This association
may change to
other regions.

Fixed set of
regions with
static, predefined
ranges

Dynamic
Floating DDM

Each object
instance is
associated with its
own region

One region per
object instance.
Ranges in the
regions may
change
dynamically.

There are of course many other potential design patterns
for DDM. The purpose of this section is to show a few
proven patterns that federation developers can start with
and apply as is.

It should also be noted that the discussion above builds on
the assumption that it is computationally more expensive
to modify regions (and thus recalculate region overlap)
than to change the association of attributes to region.

4. Tool Support
This section shows how the implementation of DDM is
supported in three commercial tools.

4.1. Developing FOMs with DDM

In Pitch Visual OMT, Dimensions are specified in a
dedicated editor, as shown in the example in Figure 8.

Figure 8: Defining a Dimension

When Dimensions have been specified they can be selected
for attributes and interactions, as shown in the example in
Figure 9.

	

Figure 9: Specifying Dimensions for an Attribute

Pitch Visual OMT also provides an advanced tool that
makes it possible to quickly specify Uniform DDM in large
FOMs with many classes and attributes.

4.2. Federate Development in C++ and Java

Pitch Developer Studio generates C++ and Java code based
on FOMs. It explicitly supports DDM based on the above
design patterns.

4.3. Verifying and Debugging at Runtime

Pitch pRTI offers the ability to inspect and verify the DDM
properties used in a federation. Figure 10 illustrates how to
inspect the Region associations of Car attributes.

Figure 10: Region to Attribute inspection in Pitch pRTI

There are also views to inspect the Ranges of all Regions
as well as the Regions used by subscribing federates.

5. DDM for RPR FOM
A standard scheme for RPR FOM would be highly
desirable to facilitate the development of large federations
in the defense and security domain. As previously
mentioned, DDM and Normalization Functions should be
kept simple. Based on discussions around the RPR FOM
and the extension in the NATO Education and Training
Network (NETN) design, the following four DDM
approaches would be the most helpful ones for many
federations. Note that it should be possible to freely
combine them.

Position using dimensions for Latitude and Longitude. The
most obvious filtering criteria for many simulations is to
get information only from a selected part of the battlefield.

Force Identifier. It is very common for a simulation to
only process information about platforms for selected
forces.

Domain (Air/Ground/Sea). This is another commonly used
discriminator. It is particularly interesting when used
together with the two previous approaches.

Echelon. This is important in particular in command and
control applications.

6. Challenges and Considerations
This section discusses some challenges when
implementing DDM as well as some particular aspects that
need to be considered.

6.1. Mixing federates that use and don’t use DDM

There may be challenges when building federations where
not all federates use DDM. The challenge for federates that
use DDM is that federates that do not use DDM will send
data without associated Regions. This data will be sent in
the Default Region, which is a region that matches all other
regions. Federates that subscribe using DDM will still need
to handle incoming data that would otherwise be filtered,
thereby reducing the performance advantage that DDM
would normally provide. A workaround can be to add
Regions for older federates using RTI plug-ins or using a
federation-to-federation bridge.

Federates that subscribe without using DDM will receive
all data that is sent, regardless of any regions used by the
sending federates. The challenge for these subscribing
federates is that they may not able to process all the
incoming data in a federation where DDM is assumed since
they don’t take advantage of the load-reducing filtering that
DDM-enabled federates do.

	

6.2. Designing reusable Normalization Functions

When implementing DDM in a federate it is an advantage
if it can be reused in different federations. Consider design
pattern 3 and 4 in this paper. As described above, they are
hard-coded to a particular geographical area. A better idea
is to make them configurable, or to come up with a generic
Normalization Function.

6.3. Understand the scenario

In many cases, the optimal Normalization Function
depends on the scenario. Consider a scenario using
checkerboard DDM for a large number of entities in a large
geographical area. Now consider a similar scenario in a
small geographical area. If we need to filter out five percent
of the entities, then the size of the grid needs to be different
in these two cases. Two possible solutions are to either use
variable parameters for the grid resolution, or to have fixed,
fine grained update regions, and vary the size of the
subscribing regions.

Similar cases may occur for other types of Normalization
Functions. In some scenarios, subscribing federates may
only need to distinguish between entities in the air, land
and sea domain, other scenarios need to distinguish
between friendly, neutral and opposing entities. For some
scenarios, the platform type may even be of interest.

Federation developers need to strike a balance between
these requirements and the recommendation earlier in this
paper, to avoid inventing “nice-to-have” DDM schemes.

6.4. Know your RTI

Another challenge is that different RTIs implement DDM
in different ways. This paper will not go into this topic,
since it would require a paper on its own. Developers are
encouraged to study the specifics and configuration options
of RTIs they are considering.

6.5. Towards cutting-edge scalability

This paper focuses on a set of good design patterns for
getting started with DDM. Advanced DDM scheme
developers may consider studying work done in JLVC and
NCTE [7] that implements a world-wide DDM grid using
both geographical and other dimensions, resulting in 55
million regions.

7. Conclusions
The size of simulation scenarios has grown considerably
over the years. DDM is one of the most important tools for
achieving scalability. This paper presents some
experiences, some advice and four design patterns as a
starting point for developers that want to start exploring
DDM.

References

[1] IEEE: "IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture
(HLA)", IEEE Std 1516-2010, IEEE Std 1516.1-
2010, and IEEE Std 1516.2-2010, www.ieee.org,
August 2010.

[2] IEEE: “IEEE Standard for Distributed Interactive
Simulations”, IEEE Std 1278.1-2012,
www.ieee.org, December 2012

[3] SISO: “SISO-STD-001.1-2015, Standard for
Real-time Platform Reference Federation Object
Model (RPR FOM)”, www.sisostds.org,
September 2015.

[4] Björn Möller et al.: “RPR FOM 2.0: A Federation
Object Model for Defense Simulations”, 2014 Fall
Simulation Interoperability Workshop, (paper
14F-SIW-039), Orlando, FL, 2014.

[5] Alexander, Christopher (1977). “A Pattern
Language: Towns, Buildings, Construction”.
Oxford University Press. ISBN 0-19-501919-9.

[6] Gamma, Erich; Helm, Richard; Johnson, Ralph;
Vlissides, John (1995). “Design Patterns:
Elements of Reusable Object-Oriented Software”.
Addison-Wesley. ISBN 0-201-63361-2.

[7] Andy Ceranowicz et al: “Revisiting Interest
Management”, 2014 Fall Simulation
Interoperability Workshop, (paper 14F-SIW-041),
Orlando, FL, 2014.

	

Author Biographies

BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
development of Pitch’s products. He has more than
twenty-five years of experience in high-tech R&D
companies, with an international profile in areas such
as modeling and simulation, artificial intelligence and
web-based collaboration. Björn Möller holds a M.Sc.
in Computer Science and Technology after studies at
Linköping University, Sweden, and Imperial College,
London. He is currently serving as the chairman of the
Space FOM Product Development group and the vice
chairman of the SISO HLA Evolved Product
Development Group. He was recently the chairman of
the SISO RPR FOM Product Development Group.

FREDRIK ANTELIUS is a Senior Software
Architect at Pitch and is a major contributor to several
commercial HLA products, including Pitch Developer
Studio, Pitch Recorder, Pitch Commander and Pitch
Visual OMT. He holds an M.Sc. in Computer Science
and Technology from Linköping University, Sweden.

MARTIN JOHANSSON	 is Systems Developer at
Pitch Technologies and is a major contributor to
several commercial HLA products such as Pitch
Developer Studio and Pitch Visual OMT 2.0. He
studied computer science and technology at Linköping
University, Sweden.

MIKAEL KARLSSON is the Infrastructure Chief
Architect at Pitch overseeing the world’s first
certified HLA IEEE 1516 RTI as well as the first
certified commercial RTI for HLA 1.3. He has more
than ten years of experience of developing simulation
infrastructures based on HLA as well as earlier
standards. He also serves on several HLA standards
and working groups. He studied Computer Science at
Linköping University, Sweden.

