
	

Building Scalable Distributed Simulations: 
Design Patterns for HLA DDM 

 
Björn Möller 

bjorn.moller@pitch.se 
 

Fredrik Antelius 
fredrik.antelius@pitch.se 

 

Martin Johansson 
martin.johansson@pitch.se 

 
Mikael Karlsson 

mikael.karlsson@pitch.se 

 
Pitch Technologies 
Repslagaregatan 25 

582 22 Linköping, Sweden 
 

Keywords: Scalability, HLA, DDM, Design patterns  
 
 

ABSTRACT: Over the last decades the size of scenarios in distributed simulation has grown considerably, for example 
in defense training. There is also a demand for larger number of federates within exercises. This means that federation 
scalability is an area of growing importance. The developers of HLA foresaw this and introduced not only class-based 
filtering, but also the HLA Data Distribution Management (DDM) for instance filtering. This is a very general and flexible 
mechanism for filtering. The challenge for many beginners has been to understand DDM and to develop efficient designs.  
 
This paper presents some design patterns for DDM and discusses their pros and cons as well as implementation and 
efficiency. One design pattern is Uniform DDM where all attributes of an object class have the same DDM dimensions 
available. This makes the use of DDM much easier in federations. Design patterns for filtering based on static properties 
(like the fuel type of a vehicle) and dynamic properties (like the position of a vehicle) are then covered.  

 
A number of best-practices are also discussed, for example FOM design, handling of objects going in and out of scope 
as well as the usefulness of advisories. Life cycle challenges, like how to mix federates with and without DDM support 
are covered. 
 
Finally, some thoughts are given on the design of general and reusable DDM schemes. As an example a number of DDM 
schemes are proposed for the RPR FOM. 
 



	

1. Introduction 
During the last decade, there has been a growing demand 
for scalability in distributed simulations. Defense 
simulation scenarios have grown and become more 
complex, for example in international civilian-military 
exercises. The number of simultaneous platform trainers in 
the same federation is also growing. While early High-
Level Architecture (HLA) [1] integrations focused on 
integrating existing monolithic simulations, today 
federations are developed in a more modular way, using a 
larger number of smaller components. And federations 
developers, like any other community, are always trying to 
push the envelope. 

The lack of scalability, from a bandwidth and CPU 
perspective, was one of several reasons for developing 
HLA as a successor of Distributed Interactive Simulation 
(DIS) [2]. Today, an increasingly common architectural 
pattern for reusing existing DIS simulations is to create an 
HLA backbone to which islands of DIS simulations are 
connected. 

1.1. Where are the bottlenecks? 

When building large distributed simulations there are many 
factors that can limit the scalability. In practice, two of the 
most common are: 

Network bandwidth limitations. While Gigabit networks 
are now common in many Local Area Networks, long 
distance links still have limited capabilities. Simple math 
shows that a one-megabit link cannot reasonably carry 
more than 1250 updates/second of 100 bytes (a common 
update size for updating entity positions). 

CPU limitations. In a distributed simulation it is necessary 
both to produce data, and to receive and process data from 
other simulations. Many simulations have limited 
capability for processing incoming updates, in particular if 
this feature was added later, rather than in the original 
design of the system. This problem gets worse as the 
federation grows.  

Consider ten simulations that send 1000 updates/second 
each. If every simulation subscribes to all of the shared 
information, they will thus receive 9000 updates/second. 
Now consider increasing the number of simulations to 100. 
They will now receive 90 000 updates/s while still only 
sending 1000 updates/s. The bottleneck for processing 
incoming data is usually CPU, although graphical sub-
systems and databases may also be a constraint. 

What program code that causes the CPU constraint is 
generally not very well understood. Many developers 
believe that, when bandwidth is abundant, the processing 
done by a communication framework, like an RTI, is 

extensive compared to the simulation model. In reality, 
very little CPU is used by the RTI to transfer information 
from the network to the receiving simulation. In the next 
step, for example when a new aircraft position is received, 
extensive processing may be needed for determining the 
relative position and angle of that aircraft and all other 
aircrafts.  

Understanding how and when incoming updates are 
processes may be crucial for optimizing a federation. In 
some cases, “lazy” strategies may work well, like avoiding 
calculations until data is actually needed, or until all data 
for a particular time frame has been received. 

1.2. General approaches for improving scalability 

There are a number of general approaches for increased 
scalability. The most obvious one, and easy to implement, 
is to increase the available bandwidth and CPU resources. 
Another is to refactor and optimize the system code 
implementation. Optimized federation design and smart 
use of services for distribution of data will also increase 
performance and scalability by allowing infrastructure 
implementations to perform sender-side filtering and other 
dynamic optimizations during runtime.       

For bandwidth limitations, there are also some common 
approaches, like compression. This can be handled by the 
network equipment, or by the sending and receiving CPU. 
In the latter case, some CPU processing is traded for 
increased bandwidth.  

Bundling is another approach, where several messages are 
sent in one bundle. This reduces the impact of the 
networking overhead, since it takes less effort to send ten 
messages of 100 bytes bundled together as one single 
1000-byte message, compared to sending them separately. 

In some network topologies it is possible to replace 
networks hubs, where all local systems share the same 
bandwidth, with switches, where each combination of 
senders and receivers can use the full bandwidth.  

Beyond these general approaches it is hard to achieve any 
optimizations without deeper insights into the information 
exchange, for example what information that is needed by 
each simulator, and what the characteristics of the 
simulation data are. 

1.3. Add domain specific information for scalability 

If more domain specific information is available for the 
filtering, better scalability may be achieved. The most 
obvious example is the publish/subscribe scheme used in 
HLA Declaration Management (DM). Each HLA federate 
subscribes to the object classes and attributes it is interested 
in. The RTI only delivers updates for a particular class and 
attributes to interested federates. The same scheme is also 



	

used for interactions. This scheme improves scalability 
when different federates have different interests. If all 
federates subscribe to all classes, little optimization can be 
achieved. 

To further optimize the information that is delivered to 
each federate, it may be desirable to deliver data only for a 
subset of the instances of a given class. An aircraft 
simulator may only be interested in other aircraft in the 
same geographical area. A command and control 
simulation may only require the positions of ground 
vehicles belonging to a certain force. If such criteria can be 
provided to the RTI, it is possible to reduce how much data 
that a federate needs to process and how much data that 
needs to be delivered over the network. There is a service 
group called Data Distribution Management (DDM) in 
HLA that provides this type of filtering. This paper seeks 
to describe how to use DDM in practical applications and 
discuss the optimal way to use it. 

It shall also be mentioned that there are several other 
domain-specific approaches. One example is dynamic 
aggregation and de-aggregation. In this case we chose to 
describe a number of entities as an aggregate, for example 
a platoon, battalion or brigade. When required, for example 
during a particular phase of the scenario, the aggregate is 
de-aggregated into a larger number of entities. This 
assumes that not all aggregates need to be de-aggregated 
all of the time, in which case no additional scalability is 
gained. Aggregation and de-aggregation is extensively 
used in command and control exercises. 

Another example is to use predictive techniques like dead-
reckoning. A sender can avoid sending messages when 
dead-reckoned values, on the receiver side, will be close 
enough to the real value. This is used in the DIS and Real-
Time Platform Reference FOM (RPR FOM) [3,4] 
standards for the exchanging spatial data for physical 
entities. 

2. Overview of HLA DDM 
This section contains a brief introduction to HLA DDM, 
that also forms a basis for the design patterns. 

2.1. General principle 

The HLA Data Distribution Management services enables 
developers of a federation to perform filtering on any data 
that they need. Figure 1 shows how DDM extends upon 
class-based subscriptions. 

 

 
Figure 1: Subscription without and with DDM 

If class-based subscriptions are used, a federate can choose 
to subscribe, for example, to all cars, but avoid to subscribe 
to aircrafts. When DDM is added, the federate can 
subscribe to diesel cars only, or cars in a selected 
geographical area. In the first case, filtering is done based 
on a static property of a car instance. In the second case, 
filtering is done based on a dynamic property of a car 
instance. 

2.2. The normalization function 

The key to understanding DDM is the Normalization 
Function. The purpose of the Normalization Function is to 
map any domain specific data in a federation into data with 
a generic format, in this case integer ranges, that the RTI 
can use. The RTI cannot reasonably be required to have 
any knowledge about a particular application domain. 
Detailed aspects like data types, enumerations, geospatial 
positioning need to be hidden. The usage of the 
Normalization function is shown in Figure 2. 

 

 
 

Figure 2: The Normalization function 

The Normalization function takes input data, which could 
be attribute values, parameters, or any variable in a 
program, and converts it into an integer range in a user-
defined Dimension. It is up to the developer to specify and 
implement a normalization function that meets his needs.  

Consider the case of different types of fuel. The developer 
can introduce a Fuel Type Dimension. All types of fuel that 



	

are used are then mapped into Ranges in this dimension, as 
shown in figure 3. When sending updates and interactions, 
or when subscribing, a DDM Region is used which 
specifies one or more Ranges, each one related to a 
Dimension.  

 
Figure 3: Sample Regions in the Fuel Type Dimension 

In the left part of Figure 3 we can see that Gasoline is 
specified as the range [0..1), meaning that the range goes 
from 0 up to, but not including, 1. Diesel is specified as the 
Range [1..2). The value goes up to 4, which is the 
Dimension Upper Bound. The right part of Figure 3 shows 
regions that are used for subscribing, which will be covered 
in the next section. 

2.3. Filtering at runtime 

For each attribute and interaction class that needs to use 
DDM, the available Dimensions must be specified. Figure 
4 shows how the Fuel Type Dimension is specified for one 
attribute of the Car class. 

 
Figure 4: Specifying available dimensions 

To perform filtering at runtime, Regions	must be used as 
follows: 

For the federate that updates an attribute (or sends an 
interaction), a Region shall be associated. As an example, 
when updating an attribute of a car, the Diesel Region (see 
Figure 3, left side) could be specified. 

For the federate that subscribes to that attribute (or 
interaction), a subscription Region shall be provided. As an 
example, the Gasoline & Diesel Region (see Figure 3, right 
side) can be used. 

The RTI will then compare these Regions when the update 
is sent. If the Regions of the update and the subscription 
overlap, then the update will be delivered. 

To conclude, the DDM services enable federation 
developers to filter on any data that they have available. 
Any data can be used as input to Normalization Functions, 
which are used to determine Regions in one or more 
dimensions. The subscription requirements, expressed as 
Regions, are compared to the Regions of the updates or 
interactions. 

2.4. Scope and Advisories 

Consider a federation using DDM, where a federate that 
displays a map subscribes to gasoline & diesel cars. The 
federate then changes the subscription to gasoline cars 
only. This means that no more updates are received for 
diesel cars. This is known as the diesel cars going out of 
scope. All these cars will now freeze if displayed on a map 
display. In order to make it easier for the map display 
federate to handle this, for example by removing, or 
greying out these cars on the map, the RTI sends out-of-
scope callbacks to the federate. Should they later come into 
scope, there are corresponding in-scope callbacks. These 
callbacks are called advisories. The updating federate gets 
the turn-updates-on and turn-updates-off advisories, to 
let it know if there are any federates that will receive any 
updates that it makes. In the above example, out-of-scope 
happens since the subscription region was changed. It may 
be just as common that an object and its attributes go out 
of scope since the updating federate changed the associated 
DDM regions. 

2.5. Why isn’t DDM more widely used? 

DDM has proven very useful in some large federations. All 
major RTIs support it. Still, it is not extensively used. Some 
reasons for this may be: 

• Many modest-size federations do not have a scalability 
problem. 

• Federations with legacy simulations, where the source 
code may not be available, cannot implement DDM in 



	

all participating federates. This limits the degree of 
filtering that can be made and thus the value of DDM. 

• The DDM configuration – dimensions, ranges and 
normalization functions – needs to be agreed upon in 
the entire federation. This limits the opportunity to 
reuse a federate in a different federation, or at least 
requires coordination across organizations or 
standardization. 

• It is not very clear from the HLA specification, or other 
documents, how to implement good DDM. The key to 
a good DDM design is the normalization function, 
which only has a short and formal description in the 
standard. 

• The most commonly used reference FOM in the 
defense domain, the Real-time Platform Reference 
FOM (RPR FOM), does not provide any Dimensions or 
Normalization Functions. One explanation for this is 
that the RPR FOM maps to the older DIS standard, 
where no DDM is available. 

The authors of this paper hope to make some 
improvements with respect to the two latter reasons. 

3. Design Patterns for DDM 
Design patterns are the re-usable form of a solution to a 
design problem. The idea was first introduced by the 
architect Christopher Alexander [5] for architecture and 
urban design. He describes a pattern as follows: “Each 
pattern describes a problem that occurs over and over again 
in our environment, and then describes the core of the 
solution to that problem, in such a way that you can use this 
solution a million times over, without ever doing it the 
same way twice.” The concept of design patterns has since 
been used in many disciplines, not the least computer 
science, where it has made a big impact through the works 
of Erich Gamma et.al., also known as the “Gang of Four” 
[6]. 

3.1. Two general recommendations 

Before looking at the design patterns, two 
recommendations are provided. The first and most 
important recommendation to DDM designers is to keep 
the DDM design simple. If just one simple Dimension 
with ten regions is used, and the data is evenly distributed 
across these regions, there is a potential of removing, on 
average, 90 percent of the incoming data for each federate, 
which means a big leap in scalability. This assumes that the 
most optimal Normalization Function is used for the 
particular domain and scenario. 

A second, related recommendation, is to avoid inventing 
“nice-to-have” DDM schemes in a federation. Make sure 
that the design patterns truly divide the simulation data 

space into partitions that are meaningful to participating 
federates. Each additional DDM scheme that is required in 
a federation imposes some work on federate developers.  

3.2. Pattern 1: Uniform DDM 

Let’s assume that we use different Dimensions and/or 
Normalization functions for each attribute of an object 
class. The result will be that different attributes will go in 
and out of scope at different times. This becomes very 
complicated to handle in a program. Parts of the remote 
object are up to date and parts are out of date. The parts that 
are up to date varies all of the time. A clearer design is 
achieved if all attributes go in and out of scope at the same 
time. The design pattern Uniform DDM is defined as 
follows: 

“All attributes of a given object class shall have the same 
available Dimensions. Federates that update any of these 
attributes, shall provide regions for all Dimensions, using 
the Normalization Function associated with each 
attribute.”  

For the Fuel Type example this means that the entire Car 
instance, with all attributes, will be either in or out of scope. 

3.3. Pattern 2: Static DDM 

The Fuel Type pattern, described in the previous chapter, 
is a good example of the Static DDM pattern. There is a 
fixed set of regions along one Dimension, in this case 
regions for Gasoline, Diesel, Ethanol and Natural Gas 
along the Fuel Type Dimension. These regions are never 
modified. Each Car instance is associated with one region. 
This association never changes.  

Another example is the Force Identifier in the RPR FOM. 
Platform instances can be associated with Regions 
connected to the Force Identifier Dimension. It will then be 
easy to subscribe to entities that are associated with the 
Friendly, but not the Opposing forces.  

The Static DDM pattern, when applied to a class, is defined 
as follows: 

“A fixed set of Regions with static Ranges are used. The 
object instance attributes are associated with the same 
Region throughout the federation execution.” 

This pattern is very efficient since there is no need for the 
RTI to recalculate the region overlaps after the initial 
calculation. The limitation is that the Normalization 
Function needs to be based on an input variable that is 
constant, like the fuel type of a car.  

3.4. Pattern 3: Dynamic Checkerboard DDM 

In many cases, we want to filter on geographical position. 
Since the position of a car is not expected to be constant 
during the federation execution, we cannot use the previous 



	

design pattern. For best efficiency we still want to use a 
fixed set of Regions. We design it so that it creates a grid 
or a “checkerboard” across the map, as shown in Figure 5. 

 
Figure 5: Checkerboard DDM regions 

In this case we use a four by four grid and get sixteen 
Regions, from [0..1) to [15..16). Each Car instance is 
associated with a Region based on its position. A 
subscribing federate can select which Regions that it is 
interested in. Figure 6 shows how a car is associated with 
square 5. A federate has a subscribing region of square 0, 
1, 4, 5 and will thus receive updates for that car. 

 
Figure 6: Checkerboard regions for updates and 

subscriptions 

The Dynamic Checkerboard DDM pattern, when applied 
to a class is defined as: 

“A fixed set of Regions with static Ranges are used. The 
object instance attributes are associated with one Region 
at a time. This association may change throughout the 
federation execution.” 

This patterns handles input variables that change over time, 
like the position of a car. Even with modest grid sizes, the 
filtering can be very powerful. A ten by ten grid can give 
an average update reduction of 99 percent. The 
recalculation of the Region overlap is usually very limited, 
and is caused by federates changing their subscriptions. 
You may also design other sets of static Regions, for 
example the States of USA. 

The limitation is that it may be difficult to design a grid that 
fits any scenario. The example in Figure 5 has one square 
(number four) that contains San Francisco, which could be 
expected to contain considerably more cars than other 
squares.  

3.5. Pattern 4: Dynamic Floating DDM 

In order to make the filtering more exact than with the fixed 
checkerboard grid, we can tailor the region to each actual 
car. We will now introduce one Latitude Dimension and 
one Longitude Dimension. We may for example use a 
Normalization Function that maps a latitude range to a 
Latitude dimension with a Dimension Upper Bound of 100, 
i.e. values of [0..100). Each car is associated with its own 
Region that is constantly updated to match the position of 
the car. This is shown in Figure 6. 

 
  Figure 7: Dynamic floating regions 

In the figure we can see two smaller Regions associated 
with two cars that move. There is also a larger Region, used 
by a subscribing federate. There is an overlap between the 
subscribing Regions and the two Regions associated with 
the cars. Note that the RTI has no insight in exactly where 
in the updating Region a car is located. If there is even the 
slightest overlap between the Regions of the updating 
federate and the subscriber, updates will be passed to the 
subscriber. 



	

The Dynamic Floating DDM pattern, when applied to a 
class is defined as: 

“One Region per object instance is used. The attributes of 
the object instance are associated with this Region. The 
Ranges of this Region may change throughout the 
federation execution”. 

Determining the size of the Regions used when updating 
the cars may be a challenge. They should be reasonably 
large, so that we do not need to modify them too often. At 
the same time, they should be kept small, in order to get 
higher accuracy when another federate subscribes to a 
region.  

As a rule of thumb, consider the update rate for the cars and 
make sure that the regions are not updated more often than 
this, since changing the filtering conditions more often than 
sending data is suboptimal. However, the biggest limitation 
with this design pattern may be that it uses a lot of Regions 
where the Ranges are frequently recalculated. This may 
cause recalculation within the Local RTI Component 
across all federates. 

3.6. Comparison  

The following table summarizes the three design patterns. 

Pattern Instance 
Attributes 

Regions 

Static DDM Statically 
associated with one 
region 

Fixed set of 
regions with 
static, predefined 
ranges 

Dynamic 
Checkerboard 
DDM 

Associated to one 
region at a time. 
This association 
may change to 
other regions. 

Fixed set of 
regions with 
static, predefined 
ranges 

Dynamic 
Floating DDM 

Each object 
instance is 
associated with its 
own region 

One region per 
object instance. 
Ranges in the 
regions may 
change 
dynamically. 

 

There are of course many other potential design patterns 
for DDM. The purpose of this section is to show a few 
proven patterns that federation developers can start with 
and apply as is. 

It should also be noted that the discussion above builds on 
the assumption that it is computationally more expensive 
to modify regions (and thus recalculate region overlap) 
than to change the association of attributes to region. 

4. Tool Support 
This section shows how the implementation of DDM is 
supported in three commercial tools. 

4.1. Developing FOMs with DDM 

In Pitch Visual OMT, Dimensions are specified in a 
dedicated editor, as shown in the example in Figure 8. 

 
Figure 8: Defining a Dimension 

When Dimensions have been specified they can be selected 
for attributes and interactions, as shown in the example in 
Figure 9. 



	

 
Figure 9: Specifying Dimensions for an Attribute 

Pitch Visual OMT also provides an advanced tool that 
makes it possible to quickly specify Uniform DDM in large 
FOMs with many classes and attributes. 

4.2. Federate Development in C++ and Java 

Pitch Developer Studio generates C++ and Java code based 
on FOMs. It explicitly supports DDM based on the above 
design patterns. 

4.3. Verifying and Debugging at Runtime 

Pitch pRTI offers the ability to inspect and verify the DDM 
properties used in a federation. Figure 10 illustrates how to 
inspect the Region associations of Car attributes.  

 
Figure 10: Region to Attribute inspection in Pitch pRTI 

There are also views to inspect the Ranges of all Regions 
as well as the Regions used by subscribing federates. 

5. DDM for RPR FOM 
A standard scheme for RPR FOM would be highly 
desirable to facilitate the development of large federations 
in the defense and security domain. As previously 
mentioned, DDM and Normalization Functions should be 
kept simple. Based on discussions around the RPR FOM 
and the extension in the NATO Education and Training 
Network (NETN) design, the following four DDM 
approaches would be the most helpful ones for many 
federations. Note that it should be possible to freely 
combine them. 

Position using dimensions for Latitude and Longitude. The 
most obvious filtering criteria for many simulations is to 
get information only from a selected part of the battlefield. 

Force Identifier. It is very common for a simulation to 
only process information about platforms for selected 
forces. 

Domain (Air/Ground/Sea). This is another commonly used 
discriminator. It is particularly interesting when used 
together with the two previous approaches. 

Echelon. This is important in particular in command and 
control applications. 

6. Challenges and Considerations 
This section discusses some challenges when 
implementing DDM as well as some particular aspects that 
need to be considered. 

6.1. Mixing federates that use and don’t use DDM 

There may be challenges when building federations where 
not all federates use DDM. The challenge for federates that 
use DDM is that federates that do not use DDM will send 
data without associated Regions. This data will be sent in 
the Default Region, which is a region that matches all other 
regions. Federates that subscribe using DDM will still need 
to handle incoming data that would otherwise be filtered, 
thereby reducing the performance advantage that DDM 
would normally provide. A workaround can be to add 
Regions for older federates using RTI plug-ins or using a 
federation-to-federation bridge. 

Federates that subscribe without using DDM will receive 
all data that is sent, regardless of any regions used by the 
sending federates. The challenge for these subscribing 
federates is that they may not able to process all the 
incoming data in a federation where DDM is assumed since 
they don’t take advantage of the load-reducing filtering that 
DDM-enabled federates do.  



	

6.2. Designing reusable Normalization Functions 

When implementing DDM in a federate it is an advantage 
if it can be reused in different federations. Consider design 
pattern 3 and 4 in this paper. As described above, they are 
hard-coded to a particular geographical area. A better idea 
is to make them configurable, or to come up with a generic 
Normalization Function. 

6.3. Understand the scenario 

In many cases, the optimal Normalization Function 
depends on the scenario. Consider a scenario using 
checkerboard DDM for a large number of entities in a large 
geographical area. Now consider a similar scenario in a 
small geographical area. If we need to filter out five percent 
of the entities, then the size of the grid needs to be different 
in these two cases. Two possible solutions are to either use 
variable parameters for the grid resolution, or to have fixed, 
fine grained update regions, and vary the size of the 
subscribing regions. 

Similar cases may occur for other types of Normalization 
Functions. In some scenarios, subscribing federates may 
only need to distinguish between entities in the air, land 
and sea domain, other scenarios need to distinguish 
between friendly, neutral and opposing entities. For some 
scenarios, the platform type may even be of interest. 

Federation developers need to strike a balance between 
these requirements and the recommendation earlier in this 
paper, to avoid inventing “nice-to-have” DDM schemes. 

6.4. Know your RTI 

Another challenge is that different RTIs implement DDM 
in different ways. This paper will not go into this topic, 
since it would require a paper on its own. Developers are 
encouraged to study the specifics and configuration options 
of RTIs they are considering. 

6.5. Towards cutting-edge scalability 

This paper focuses on a set of good design patterns for 
getting started with DDM. Advanced DDM scheme 
developers may consider studying work done in JLVC and 
NCTE [7] that implements a world-wide DDM grid using 
both geographical and other dimensions, resulting in 55 
million regions.  

7. Conclusions 
The size of simulation scenarios has grown considerably 
over the years. DDM is one of the most important tools for 
achieving scalability. This paper presents some 
experiences, some advice and four design patterns as a 
starting point for developers that want to start exploring 
DDM. 
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