
	

Design and Principles Enabling the Space Reference FOM

Björn Möller
Pitch Technologies
Repslagaregatan 25

58222 Linköping, Sweden
+46 13 4705503

bjorn.moller@pitch.se

Edwin Z. Crues
Simulation and Graphics Branch (ER7)

Software, Robotics, and Simulation Division (ER)
NASA Johnson Space Center

2101 NASA Road 1, Houston, TX
edwin.z.crues@nasa.gov

Dan Dexter
Simulation and Graphics Branch (ER7)

Software, Robotics, and Simulation Division (ER)
NASA Johnson Space Center

2101 NASA Road 1, Houston, TX
daniel.e.dexter@nasa.gov

Michael Madden
Simulation Development and Analysis Branch (D107)

NASA Langley Research Center
24 West Taylor Street, Hampton, VA

Michael.M.Madden@nasa.gov

Alfredo Garro
University of Calabria

Department of Informatics, Modeling, Electronics and
Systems Engineering (DIMES)

University of Calabria
Via P. Bucci 41C, 87036 Rende (CS), Italy

alfredo.garro@dimes.unical.it

Anton Skuratovskiy
RusBITech

Varshavskoye shosse 26
117105 Moscow, Russia

+7 495 648 0640
a.skuratovskiy@rusbitech.ru

Keywords: Space simulation, Reference FOM, HLA, Time Management,

Reference Frame, Execution Control, Simulation Initialization

ABSTRACT: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference
Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and
discusses the opportunity for reuse in other domains.

The focus of this first version of the standard is execution control, time management and coordinate systems, well-
known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is
the coordinated start-up process. This process contains a number of steps, including checking of required federates,
handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization.

An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze
mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High
Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps
is introduced, as well as an approach for finding common boundaries for fully synchronized freeze.

For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a
position and orientation related to a parent reference frame. This makes it possible for federates to perform
calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar
coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in
one reference frame have an unambiguous relationship to a coordinate in another reference frame.

While the Space Reference FOM is originally being developed for Space operations, we believe that many parts of it
can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and
require high fidelity and repeatability.

	

1. Introduction
Previous papers [1,2] provide a background on the
importance of distributed simulation for the space
domain, as well as examples of a number of High Level
architecture (HLA) [3] federations in the Space domain,
from the late 90’s up till today.

Continued discussions in the Simulation Interoperability
Standards Organization (SISO) space simulation
community led to the initiative to start up a group to
develop a standard that could serve as a foundation for
better a priori interoperability between space simulations.

A product nomination for a Space Reference Federation
Object Model (FOM) was composed, submitted to the
SISO Standards Activities Committee (SAC), and
ultimately approved by the SAC for development. A
Product Development Group (PDG) was formed to
develop the Space Reference FOM standard.

1.1. Progress of the standards development

The initial Space Reference FOM PDG meeting was held
at the SISO Fall 2015 Simulation Innovation Workshop
(SIW) in September 2015. Since this initial PDG meeting,
more than 60 meetings have been held. Space Reference
FOM PDG members include government, industry and
academia. The group has provided draft versions of the
standard to the international university outreach program
Simulation Exploration Experience (SEE, previously
SISO “Smackdown”) [4].

As of September 2017, a first, almost complete draft
exists. The next step is test and verification of the draft.
Three different teams in the drafting group are developing
three different implementations of the core components of
the Space Reference FOM, which will then be cross-
tested in different combinations. After the tests, the
standard will go through formal balloting, according the
SISO Balloted Products Development & Support Process
(BPDSP) [5]. The target is to release the final standard in
2018.

1.2. The standard broken down into design patterns

The standard provides detailed solutions to a number of
key requirements in a space federation. In this paper,
these solutions are presented in a generic form. This
makes it easier to explain their essence.

The approach chosen is known as “Design patterns” [6] in
the software community. A design pattern can be
described as a “general reusable solution to a commonly
occurring problem within a given context” (Wikipedia).

1.3. Federate Roles

Several of these patterns depend on the three federate
roles that are defined in the Space Reference FOM. They
are:

1. The Master role, that controls the initialization
and execution of the federation.

2. The Pacer role, that manages the advancement
of scenario time in relationship to the real time.

3. The Root Reference Frame Publisher role,
that publishes the root of the tree of reference
frames, as described later in this paper.

The patterns are grouped into three types:

1. Execution Control design patterns, where the
federates and the Master are important

2. Time Management design patterns, where the
Pacer and the Master are important.

3. Spatial design patterns, where the Root
Reference Frame Publisher and the Master are
important.

All diagrams in this paper are based on the June 2017
draft version of the Space Reference FOM [7], that
contains diagrams with considerably more technical
detail. These solutions are based on lessons learned from
real-life federations. Many of them are derived from the
Integrated Mission Simulation document [8] by NASA.

1.4. HLA services used

Many of the patterns rely on the HLA synchronization
point services. They make it possible for federates to
pause and wait for all federates to complete their
processing and proceed to the next step in a fully
synchronized way. HLA time management is also used.
Some familiarity with these services is required to
understand the patterns in this paper.

2. Execution Control Design Patterns
This section describes the six main patterns that are used
for initialization and execution control in the Space
Reference FOM. They are described in the order that they
are typically executed in a federate.

The patterns are:

1. Removal of orphaned federation execution

2. Centralized checking of required federates

3. Detection if a federate is a late joiner

4. Global configuration data in singleton instance

5. Synchronized multi-phase initialization

	

6. Central execution control with transition requests

Since there are many federates executing in parallel, these
patterns may be running in parallel in a federation
execution. As an example, several federates may be
performing a synchronized multi-phase initialization,
while a new federate detects if it is a late joiner or not.

2.1. Removal of orphaned federation execution

Requirement: A federation needs to ensure that it
executes in a clean federation execution when it starts. If
not, the federation execution may contain orphaned object
instances, or may have been advanced in HLA logical
time. Such a federation execution typically exists if
federates in a previous execution did not shut down
correctly.

Figure 1: Removal of orphaned federation

Solution: After connecting to the RTI, a federate
immediately destroys the federation execution. It then
creates and joins the federation execution. In case the
federation doesn’t exist anymore, since another federate
just destroyed it, the federate needs to go back and try to
create it.

Discussion: Note how this pattern needs to handle the
case when several federates are trying to join at almost the
same time and may potentially destroy each other’s
federation executions. This pattern also relies on the
property that a federation execution cannot be destroyed,
once a federate has successfully joined it.

2.2. Centralized checking of required federates

Requirement: a certain set of federates need to be present
before the simulation can start. This may be for technical
reasons, or to be able to perform a meaningful simulation.

Figure 2: Check for required federates

Solution: a designated federate is used, in this case the
federate with the Master role. It has access to a list of the
federate names of the required federates, for example in a
configuration file. After joining the federation execution,
it uses the HLA Management Object Model (MOM) to
monitor which federates that have joined. When all
required federates have joined, it registers the
synchronization point “Initialization Started”.

Other federates need to perform the following sequence.
After joining, it checks if the synchronization point
“Initialization Started” has been announced. If this
synchronization point hasn’t been announced, the federate
enters a wait loop, where it periodically checks if
“Initialization Started” has been announced. When it has
been announced, the federate will start the main
initialization.

Note that this pattern is extended later in the next pattern.

Discussion: In this pattern, the availability of a
synchronization point is used as a global flag. The pattern
doesn’t require any particular start order between the
Master federate and the required federates. The pattern
will, to some degree, ensure that all required federates
start the initialization process at the same time.

2.3. Detection if a federate is a late joiner

Requirement: This pattern applies to a federate that may
execute as either an early joiner or a late joiner. Late
joiner, in this context, means that the initialization has

Destroy	Federation	
Execution

Create	Federation	
Execution

Join	Federation	
Execution

Start

End

Connect	 to	RTI

Success
No

Yes

Register	Sync	Point	
“Initialization	
Started”

Master	
Federate	
Start

End

Check	 joined	
federates	using	

MOM

Required	
federates	
joined

No

Yes

Other	
Federate	
Start

End

Synch	Point	
”Initialization	
Started”	
registered

No

Yes

	

already been completed. In case it joins a federation early,
it needs to complete certain initialization steps. In case it
joins late, different steps may need to be performed.

Figure 3: Detection if a federate is a late joiner

Solution: A designated federate, in this case the federate
with the Master role, registers the synchronization point
“Initialization Completed”. If this synchronization point
hasn’t been announced, the federate will act as an early
joiner and go through the initialization steps. Otherwise it
will act as a late joiner and will go through the late joiner
steps.

Discussion: This pattern also uses the availability of a
synchronization point as a global flag. Note that this
pattern doesn’t guarantee that an early joiner federate
enters the initialization steps in sync with other federates.

(Initialization completed never achieved.

2.4. Global configuration data in singleton instance

Requirement: A federation needs to share a number of
global properties, for example static data, such as epoch
or references to important object instances or dynamic
data, such as execution state. Storing static data in
configuration files for each federate introduces a risk of
mismatching data.

Figure 4: Shared configuration data in singleton

Solution: A dedicated federate registers an object
instance of a particular object class with a specific HLA
object instance name. The dedicated federate provides the
attribute values. This may be based on configuration data
provided to the dedicated federate, or by discovering data
in the federation. Other federates will get the
configuration data by subscribing to the particular object
class.

Discussion: In the Space Reference FOM, the federate
with the Master role registers an object instance called
“ExCO”, which stands for Execution Configuration
Object. It contains information like the Epoch, current
run/freeze mode, and name of the root reference frame.

2.5. Synchronized multi-phase initialization

Requirement: Before starting the main execution,
federates need to exchange initial data. Some of the data
cannot be calculated before some other data has been
provided by some other federate. To be able to control
and verify that all data has been provided, the federation
needs to go through a specified set of initialization phases.

Master	
Federate	
Start

Other	
Federate	
Start

End

Synch	Point	
”Initialization	
Started”	
registered

Yes

Perform	Master	
Initialization

Achieve	Sync	Point	
“Initialization	Started”

and	wait	for	
synchronized

Register	Sync	Point	
“Initialization	
Completed”

End

Create	&	Join

Synch	Point	
”Initialization	
Completed”	
registered

Perform	Late	Joiner	
Initialization

Perform	Early	Joiner	
Initialization

Achieve	Sync	Point	
“Initialization	
Started”

No No

Yes

End

Master
Federate Federate Federate

Runtime	Infrastructure	 – RTI

ExCO Object
Epoch 01-Jan-2017	00:00
RootRefFrame MoonCentricInertial
RunMode Running
NextMode Freeze
NextModeTime 12345.66

	

Figure 5: Multi-phase Initialization

Solution: A number of named phases have been agreed
upon in advance, each phase with corresponding named
synchronization point. In the example in Figure 5 there
are two phases called A and B. A dedicated federate role
registers these synchronization points. It then achieves
them, one by one. After achieving a synchronization
point, it waits for the federation to be synchronized,
before achieving the next synchronization point.

Participating federates will perform the following for each
phase: first send out initialization data, then achieve the
synchronization point and finally wait for the federation
being synchronized.

Discussion: In the Space Reference FOM, the Master
federate manages the multi-phase initialization. One
advantage of this pattern is that it makes it easier to verify
and potentially troubleshoot the initialization.

2.6. Central execution control with transition
requests

Requirement: Federates need to transition between
initializing mode, running mode, freeze mode and
shutdown in a controlled manner. Any federate may need
to request a mode transition. Since federates may use
different time steps, or may need some time to transition,
the transition may not happen immediately. Late joining
federates must perform a required transition, even if the
transition was requested before a federate joined.

Figure 6: Requesting mode transitions

Solution: A global object instance, in this case the
Execution Configuration Object (ExCO), stores the
current mode, as well as the next mode, together with the
time for the next mode. Any federate can make requests
for mode transitions, as shown in Figure 6. The Master
federate will calculate an acceptable time for the mode
transition and store this in the ExCO.

Figure 7: Execution Modes and synchronization

Mode transitions to Freeze or Run start with achieving a
synchronization point, in order to synchronize federates
that take different time to transition, as shown in Figure 7.
Mode transitions to Shutdown do not use a
synchronization point. Note that it is possible for the
federation to go directly to shutdown, if a federate fails
during initialization.

All federates that produce data or have HLA Time
Regulation turned on, must transition to the next state as
specified in the ExCO. Data loggers and visualizers may
not always take part in the state transitions.

Interaction and Attribute Updates related to requesting
and performing the state changes need to be sent using

Send	any	data	for	
Phase	A

Wait	for	required	
data	for	Phase	A

Achieve	Sync	Point	
“Phase	A”

Wait	for	“Phase	A”	
synchronized

Non-Master
Start

Next	phase

Achieve	Sync	Point	
“Phase	A”

Wait	for	“Phase	A”	
synchronized

Achieve	Sync	Point	
“Phase	B”

Wait	for	“Phase	B”	
synchronized

Master
Start

End

Register	Sync	Points	
“Phase	A”	and	
“Phase	B”

Phase	A
Master
Federate Federate Federate

Runtime	Infrastructure	 – RTI

EcCO Object

Request	Mode	Transition	(Freeze)1

2 Set	Next	Mode	(Freeze,	1020.0)

Start

Initialization

Run

Shutdown

Freeze

Sync Sync

Sync

End

	

Receive Order in a federation using HLA Time
Management

Discussion: Transitioning to shutdown needs special
consideration in this pattern. An operator may require
going to shutdown at any point in time, for example when
a federate becomes unresponsive or faulty in other ways.
A synchronization point cannot be used in this case, since
unresponsive federates may never achieve a
synchronization point, thus preventing the entire
federation from shutting down.

3. Time Management Design Patterns
This section describes two patterns for managing time.
The Space Reference FOM describes several time
concepts, where some of the most important are:

Scenario Time is the conceptual time associated with the
physical systems that are modeled in the federates.

HLA Logical Time is the time used by HLA to time-
stamp and order messages and to regulate time advance.
The HLA logical time starts at zero. It can be related to
the scenario time by providing an Epoch (starting point).

Physical time or “real world time” in the Space
Reference FOM is based on the classical Newtonian
concept of absolute time, which is a simplification
compared to the relativistic space-time concept.

The patterns are:

1. Constant but potentially different federate time
steps

2. Mix of paced scenario time and physical time

The time management patterns are closely related to the
execution control patterns, in particular the transition
requests between the Run, Freeze and Shutdown modes.
Here they are presented standalone, but to get the exact
details, the reader is encouraged to read the Space
Reference FOM.

3.1. Constant but potentially different federate time
steps

Requirement: A number of federates that use time-
stepped simulation need to execute together in a
federation. The time-steps are constant but may be
different between federates. The federation needs to have
well-defined points in time when the federation wide state
is complete and consistent, for example for check-
pointing, snap-shooting or freeze of the federation.

Figure 8: Federate and Federation time steps

Description: A common Federation Time Step is agreed
upon. The federate with the pacing role shall advance
time using this time step, as shown in Figure 8. Any other
federate shall advance time using a time step, called the
Federate Time Step, that shall be an integer multiple n>=1
of the Federation Time Step.

Each federate has a native time step of its internal physics
model, here called the Simulation Time Step. The
Federate Time Step shall be an integer multiple n>=1 of
the Simulation Time Step.

The pattern guarantees that there will be recurring HLA
Logical times to which all federates will be granted, here
called Common Time Boundaries. These can be
calculated as the least common denominator of all
Federate Time Steps.

Discussion: Many, but not all, physics simulations have
configurable time steps, which facilitates the choice of
federation time step. If one federate is less flexible in the
choice of time step, this may strongly influence the choice
of time step. The more important aspect, when selecting
time steps for physical models, may be the resolution and
fidelity that is required for a particular simulation
purpose.

3.2. Mix of paced scenario time and physical time

Requirement: An HLA federation can accommodate
both simulations running in soft real-time and simulators
that use central timing equipment (CTE) (e.g., a GPS
timing board) for hard real-time synchronization. The
HLA federation is capable of going to freeze, and later
resume. The simulations that synchronize using the CTE,
must also be able to handle these mode transitions, which
may be more demanding.

Scenario	Time	/	HLA	Logical	Time

Pacing
Federate

Federate	Time	Step	=	4

Simulation	Time	Step	=	1
Federate	A

Federate	Time	Step	=	8

Simulation	Time	Step	=	8
Federate	B

Federation	Time	Step	=	4

	

Figure 9: CTE time line and Scenario time line

Description: The federation is regarded as having two
time lines, the scenario time-line and the CTE time-line as
shown in Figure 9. These are connected in Run mode but
disconnected at Freeze mode. The federate with the
Master role is responsible for connecting them when
entering Run mode by calculating an offset (CTE epoch).
This epoch specifies the offset between the CTE time and
the scenario time.

Figure 10: Advancing scenario time vs CTE time

In Run mode, each CTE-based federate will perform a
Time Advance Request, wait for the next CTE time and
then check that a Time Advance Grant has been received,
before simulating the next time step as shown in Figure
10.

Discussion: This pattern requires that the Master is also
connected to the CTE.

4. Spatial Design Patterns
This section describes the patterns for handling spatial
information. Space simulations may include assets that

operate on or about celestial bodies other than the Earth.
Therefore, there is no common reference frame of
convenience for all space simulations. Moreover, when
modeling operations that span multiple celestial bodies,
each federate may prefer to operate an asset in a local
reference frame but the federation must relate those
reference frames to each other using a common parent
reference frame in order enable interaction. For example,
a simulation of a ground station on the Earth sending
commands to a spacecraft orbiting Mars may simulate the
ground station in an Earth-centered frame and the
spacecraft in a Mars-centered frame but relates these two
frames using a Solar System Barycenter frame. The
Space Reference FOM accomplishes this using two
patterns:

1. Reference frames are explicitly specified using
object instances of a ReferenceFrame object;

2. Reference frames are organized using a
replaceable and extendable tree of
ReferenceFrame objects.

4.1. Reference Frames explicitly specified using
object instances

Requirement: Different models in a federation need to
perform calculations related to positions that are
geographically dispersed. It is conceptually and
computationally inconvenient to perform all calculations
using the same coordinate system.

Figure 11: Reference Frame

Description: Create one object instance of the
ReferenceFrame class for each reference frame that is
required. Each ReferenceFrame is identified using a
name. Positions, for examples for a space vehicle, are
given in relation to a named reference frame.

CTE	Time	Line

Scenario	Time	Line

Run

Freeze

Run
0 10 20 30 40

Calculate
Offset

Calculate
Offset

12:01:05 12:01:06

Check	 that	Time	
Advance	Granted	
has	been	received

Simulate	this	
time	step

Time	Advance	
Request

Wait	for	next	CTE	
time	

Go	to	Run	
mode

Mode

Freeze,
Shutdown

Run

Other	
Modes

Calculate	Scenario	
time	to	CTE	offset

HLAobjectRoot

ReferenceFrame
name : HLAunicodeString
parent_name : HLAunicodeString
state : SpaceTimeCoordinateState

ReferenceFrameTranslation
position : PositionVector
velocity : VelocityVector

ReferenceFrameRotation
attitude_quaternion : AttitudeQuaternion
angular_velcoity : AngularVelocityVector

SpaceTimeCoordinateState
time : Time
translational_state : ReferenceFrameTranslation
rotational_state : ReferenceFrameRotation

	

The Space Reference FOM defines a syntax for creating
unambiguous reference frame names. Each
ReferenceFrame object specifies a parent ReferenceFrame
by name and the ReferenceFrame’s translational state
(position and velocity) and rotational state (attitude and
rotation rate) relative to the parent ReferenceFrame.
Quaternions are used to describe orientation to avoid the
singularities of Euler coordinates. ReferenceFrames also
specify the Terrestrial Time (TT) congruent with the
translational and rotational state.

Discussion: Many other FOMs use an implicit coordinate
system, for example geodetic coordinates (latitude,
longitude, and altitude). This becomes very inconvenient
if you, for example, were to simulate the behavior of a
rover on the surface of the moon using such Earth-based
coordinates.

4.2. Replaceable and Extendable Tree of Reference
Frames

Requirement: Need to translate coordinates between
several different reference frames in order to determine
spatial relationships between entities using different
coordinate systems. Need to be able to switch between
different reference frames during execution, for most
convenient computations. Need to be able to use different
sets of reference frames for different scenarios. Need to
extend common and standardized reference frames with
custom reference frames.

Figure 12: Tree of Coordinate Systems

Description: Structure the reference frames into one
single directed acyclic graph (i.e. a tree). Each reference
frame specifies its translational and rotational states with
respect to the parent reference frame, except for the root.
Translation between any two reference frames can be
performed by traversing the graph to a common parent
and performing the related transformations by using
quaternion algebra.

New reference frames can be dynamically added into the
tree as needed. The actual tree may be different between
different scenarios.

To assure that all federates agree on the relative states
between reference frames, a specialized federate

calculates and publishes the translational and rotational
states of the reference frames in the tree. The Space
reference FOM requires that a designated Root Reference
Frame Publisher exists in any federation. A reference to
the root reference frame is stored in the ExCO object.

Discussion: One advantage of this pattern is the
opportunity to develop and reuse federates that simulate,
for example, the bodies of the solar system. Alternate
federates may provide different models with different
fidelity. One disadvantage is the calculations needed to
convert between different reference frames. However, in
many space federates, this may always be required.

5. Discussion
5.1. Simpler and more advanced versions of the

patterns

The patterns described are available in three different
versions that can be found in different documents:

1. This paper presents these patterns “as simple as
possible, but not simpler”. This makes the principles
easier to understand.

2. The Space Reference FOM provides the same
patterns with all details that are necessary to
implement them, in particular with the HLA service
calls described. Anybody that wishes to implement a
federate compliant with the Space Reference FOM
should study these carefully.

3. The IMSim document [8] presents even more
extended versions, also including check pointing.
This is interesting background reading for the
advanced developer. Note that there are a number of
differences between these patterns and the Space
Reference FOM.

5.2. Comparison to defense training federations

The most widely used FOM in the defense training
domain is the SISO Real-time Platform Reference FOM
[9,10]. There are major differences between the Space
Reference FOM and RPR FOM. Most of them are due to
the fact that the RPR FOM replicates the behavior and
information model of the earlier DIS [11] standard (which
is based on the even older SIMNET framework) and
seeks to maintain backwards compatibility. The Space
Reference FOM represents a view of simulation
interoperability that is at least one or two decades newer.
Some key differences are:

Reliable data exchange. The information exchange in the
Space Reference FOM uses reliable communication, as
opposed to best effort transportation in the RPR FOM.

SolarSystemBarycentricInertial

SunCentricInertial MarsCentricInertialEarthMJ2000Eq

EarthFixed MoonCentricInertial

MoonFixed

MarsFixed

	

Causality and repeatability. The use of time managed
delivery of updates and federate time advance in the
Space Reference FOM guarantees correct delivery order
between federates, which is required for causality and
repeatability. Not only may RPR FOM updates be
delivered in the past of a federates logical time, they may
even be lost.

Well-managed set of federates. The required federates in
a Space FOM federation are explicitly checked during
startup. No corresponding mechanism is specified in the
RPR FOM.

Coordinated initialization. The Space Reference FOM
provides several explicit mechanisms for coordinated
initialization of the federation and its initial state. There is
no such mechanism in the RPR FOM.

Synchronization. Federates may take some time to go
between run, freeze and shutdown. The Space Reference
FOM guarantees that no simulation starts before all
systems are ready. In the RPR FOM, all federates can be
seen as “free-running” and starting their simulation
independently after a freeze. Coordinated shutdown isn’t
supported.

Support for soft real-time and Central Timing
Equipment. The Space Reference FOM allows for any
mix of soft real-time synchronized and central timing
equipment. The RPR FOM is commonly used with GPS
time or similar for time stamping, but there is no
coordination between the GPS time and the delivery of
updates with such time stamps.

Use of multiple reference frames. The Space Reference
FOM supports any number of reference frames, together
with a system for translation between them. This enables
simulations to use reference frames that are
computationally convenient for them. The RPR FOM
implicitly use geocentric coordinates, which may work for
Earth centric simulations, but are inconvenient for space
simulation. Note that the RPR FOM supports Relative
Spatial attributes for relating entities to other “parent”
entities.

6. Conclusions
A number of design patterns and principles from the
Space Reference FOM have been presented. The patterns
relate to three areas: execution control, time management
and spatial design with reference frames. All simulations
in the space domain need to implement solutions for these
areas, even for running standalone. When several space
simulations are federated, handling of initialization, time
and space are the fundamental areas that need to be
addressed, before higher level processes, like space travel,

can be addressed. This is why these areas are the focus of
the first version of the Space Reference FOM.

6.1. Sharing knowledge inside and outside of the
Space simulation community

The main purpose of the paper is to introduce the patterns
and design principles to developers of distributed
simulation in the space domain. The Space Reference
FOM is already getting attention from developers and
organizations outside of the current SISO PDG, which is
promising. A prerelease of the Space Reference FOM was
also used in the SEE 2017 university outreach program.

A secondary purpose is to share them with simulation
developers from other domains. Indeed, although the
presented design principles and patterns have been
conceived with reference to the Space domain, most of
the resulting solutions are domain independent and could
be exploitable in other application domains with no or
limited modifications. Through SISO and other
organization we can exchange ideas, learn from each
other and advance the state of the art.

	

References

[1] B. Möller, E. Z. Crues, D. E. Dexter, A. Garro,

A. Skuratovskiy, A. Vankov. A First Look at the
Upcoming SISO Space Reference FOM.
Proceedings of the SISO 2016 Simulation
Innovation Workshop (SIW), Orlando, Florida,
USA, September 11-16, 2016.

[2] B. Möller, A. Garro, A. Falcone, E. Z. Crues, D.
E. Dexter. Promoting a-priori interoperability of
HLA-based Simulations in the Space domain: the
SISO Space Reference FOM initiative.
Proceedings of the 20th IEEE/ACM International
Symposium on Distributed Simulation and Real
Time Applications (ACM/IEEE DS-RT),
London, UK, September 21-23, 2016, ISBN:
978-150903504-5.

[3] IEEE: "IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture
(HLA)", IEEE Std 1516-2010, IEEE Std 1516.1-
2010, and IEEE Std 1516.2-2010, www.ieee.org,
August 2010.

[4] Simulation Exploration Experience (SEE)
project, [online], available
at http://www.exploresim.com/

[5] SISO: “SISO-ADM-003-2011 Balloted Products
Development and Support Process (BPDSP),
www.sisostds.org, November 2011

[6] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,
USA, 1995.

[7] SISO: Space Reference FOM, Draft of May 2017
[8] Daniel E. Dexter, Tony E. Varesic “Integrated

Mission Simulation (IMSim). Multiphase
Initialization Design with Late Joiners, Rejoiners
and Federation Save & Restore.”, NASA
Simulation and Graphics Branch (ER7) Software,
Robotics and Simulation Division (ER)
Engineering Directorate, Lyndon B. Johnson
Space Center, May 7, 2015

[9] SISO: “SISO-STD-001.1-2015, Standard for
Real-time Platform Reference Federation Object
Model (RPR FOM)”, www.sisostds.org,
September 2015.

[10] Björn Möller et al.: “RPR FOM 2.0: A
Federation Object Model for Defense
Simulations”, 2014 Fall Simulation
Interoperability Workshop, (paper 14F-SIW-
039), Orlando, FL, 2014.

[11] IEEE: “IEEE standard for, Distributed Interactive
Simulation – Application Protocols”, IEEE Std

1278.1-2012, www.ieee.org, 2012

	

Author Biographies

BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
development of Pitch’s products. He has more than
twenty-five years of experience in high-tech R&D
companies, with an international profile in areas such
as modeling and simulation, artificial intelligence and
web-based collaboration. Björn Möller holds a M.Sc.
in Computer Science and Technology after studies at
Linköping University, Sweden, and Imperial College,
London. He is currently serving as the chair of the
Space FOM Product Development group and the vice
chair of the SISO HLA Evolved Product Development
Group. He was recently the chair of the SISO RPR
FOM Product Development Group.

EDWIN “ZACK” CRUES has over 25 years of
professional experience in developing spacecraft
simulation and simulation technologies. Zack is currently
a member of the Simulation and Graphics branch at
NASA’s Johnson Space Center in Houston, Texas where
he leads the development of simulation technologies and
the application of those technologies in the simulation of
NASAs current and proposed crewed spacecraft. He has
developed hundreds of models and simulations for NASA
spacecraft including Shuttle, International Space Station
(ISS), Orion, Altair, Morpheus and the Multi-Mission
Space Exploration Vehicle. Zack’s recent research focus
has been developing and applying distributed computation
and distributed simulation technologies. This includes a
large-scale distributed simulation of NASAs proposed
human space exploration missions. Zack also has
international experience in developing simulations of
European Space Agency launch systems and Japanese
Aerospace Exploration Agency spacecraft.

DAN DEXTER is an engineer in the Simulation &
Graphics Branch in the Software, Robotics and
Simulation Division of the Engineering Directorate at
NASA’s Johnson Space Center in Houston, Texas. He has
over 22 years of software and simulation development
experience ranging from nonlinear signal and image
processing, distributed supercomputing, and flight related
software to national and international distributed
simulations. He is the principal developer of the
TrickHLA software package, a NASA developed
middleware software package for using the HLA
distributed simulation standard with NASA standard
M&S tools.

ALFREDO GARRO is an Associate Professor of
Computer and Systems Engineering at the Department of
Informatics, Modeling, Electronics and Systems
Engineering (DIMES) of the University of Calabria

(Italy). In 2016, he was Visiting Professor at NASA
Johnson Space Center (JSC), working with the Software,
Robotics, and Simulation Division (ER). His main
research interests include: Modeling and Simulation,
Systems and Software Engineering, Reliability
Engineering. His list of publications contains about 100
papers published in international journals, books and
proceedings of international and national conferences. He
is vice chair of the SISO Space Reference FOM Product
Development Group. He is the Technical Director of the
“Italian Chapter” of INCOSE.

MICHAEL MADDEN is the Chief Scientist for the
Simulation Development and Analysis Branch at NASA
Langley Research Center. He holds a B.S. and M.S.
degree in Aerospace Engineering from Virginia Tech. Mr.
Madden has 24 years of experience developing
simulations of wide variety of aerospace vehicles for
human-in-the-loop, hardware-in-the-loop, and distributed
applications. His areas of interests include physical
modeling of vehicles and their operating environments,
simulation and real-time software architectures, and
avionics software for both aircraft and spacecraft.

ANTON SKURATOVSKIY is a senior software
engineer with RusBITech. After his 10-year service in the
Air Force, he worked for D-3-Group and GTI6 companies
since 1999 participating in research activities focused on
using distributed simulation technologies in aerospace
applications including support to ATV-ISS simulation and
ground controller training. Currently at RusBITech he is
working on both HLA and DDS middleware.

