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ABSTRACT: A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference 
Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and 
discusses the opportunity for reuse in other domains. 
 
The focus of this first version of the standard is execution control, time management and coordinate systems, well-
known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is 
the coordinated start-up process. This process contains a number of steps, including checking of required federates, 
handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. 
 
An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze 
mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High 
Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps 
is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. 
 
For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a 
position and orientation related to a parent reference frame. This makes it possible for federates to perform 
calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar 
coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in 
one reference frame have an unambiguous relationship to a coordinate in another reference frame. 
 
While the Space Reference FOM is originally being developed for Space operations, we believe that many parts of it 
can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and 
require high fidelity and repeatability. 



	

1. Introduction 
Previous papers [1,2] provide a background on the 
importance of distributed simulation for the space 
domain, as well as examples of a number of High Level 
architecture (HLA) [3] federations in the Space domain, 
from the late 90’s up till today. 

Continued discussions in the Simulation Interoperability 
Standards Organization (SISO) space simulation 
community led to the initiative to start up a group to 
develop a standard that could serve as a foundation for 
better a priori interoperability between space simulations.  

A product nomination for a Space Reference Federation 
Object Model (FOM) was composed, submitted to the 
SISO Standards Activities Committee (SAC), and 
ultimately approved by the SAC for development. A 
Product Development Group (PDG) was formed to 
develop the Space Reference FOM standard. 

1.1. Progress of the standards development 

The initial Space Reference FOM PDG meeting was held 
at the SISO Fall 2015 Simulation Innovation Workshop 
(SIW) in September 2015. Since this initial PDG meeting, 
more than 60 meetings have been held. Space Reference 
FOM PDG members include government, industry and 
academia. The group has provided draft versions of the 
standard to the international university outreach program 
Simulation Exploration Experience (SEE, previously 
SISO “Smackdown”) [4]. 

As of September 2017, a first, almost complete draft 
exists. The next step is test and verification of the draft. 
Three different teams in the drafting group are developing 
three different implementations of the core components of 
the Space Reference FOM, which will then be cross-
tested in different combinations. After the tests, the 
standard will go through formal balloting, according the 
SISO Balloted Products Development & Support Process 
(BPDSP) [5]. The target is to release the final standard in 
2018. 

1.2. The standard broken down into design patterns 

The standard provides detailed solutions to a number of 
key requirements in a space federation. In this paper, 
these solutions are presented in a generic form. This 
makes it easier to explain their essence. 

The approach chosen is known as “Design patterns” [6] in 
the software community. A design pattern can be 
described as a “general reusable solution to a commonly 
occurring problem within a given context” (Wikipedia). 

1.3. Federate Roles 

Several of these patterns depend on the three federate 
roles that are defined in the Space Reference FOM. They 
are: 

1. The Master role, that controls the initialization 
and execution of the federation. 

2. The Pacer role, that manages the advancement 
of scenario time in relationship to the real time. 

3. The Root Reference Frame Publisher role, 
that publishes the root of the tree of reference 
frames, as described later in this paper. 

The patterns are grouped into three types: 

1. Execution Control design patterns, where the 
federates and the Master are important 

2. Time Management design patterns, where the 
Pacer and the Master are important. 

3. Spatial design patterns, where the Root 
Reference Frame Publisher and the Master are 
important. 

All diagrams in this paper are based on the June 2017 
draft version of the Space Reference FOM [7], that 
contains diagrams with considerably more technical 
detail. These solutions are based on lessons learned from 
real-life federations. Many of them are derived from the 
Integrated Mission Simulation document [8] by NASA. 

1.4. HLA services used 

Many of the patterns rely on the HLA synchronization 
point services. They make it possible for federates to 
pause and wait for all federates to complete their 
processing and proceed to the next step in a fully 
synchronized way.  HLA time management is also used. 
Some familiarity with these services is required to 
understand the patterns in this paper. 

2. Execution Control Design Patterns 
This section describes the six main patterns that are used 
for initialization and execution control in the Space 
Reference FOM. They are described in the order that they 
are typically executed in a federate. 

The patterns are: 

1. Removal of orphaned federation execution 

2. Centralized checking of required federates 

3. Detection if a federate is a late joiner 

4. Global configuration data in singleton instance 

5. Synchronized multi-phase initialization 



	

6. Central execution control with transition requests 

Since there are many federates executing in parallel, these 
patterns may be running in parallel in a federation 
execution. As an example, several federates may be 
performing a synchronized multi-phase initialization, 
while a new federate detects if it is a late joiner or not. 

2.1. Removal of orphaned federation execution 

Requirement: A federation needs to ensure that it 
executes in a clean federation execution when it starts. If 
not, the federation execution may contain orphaned object 
instances, or may have been advanced in HLA logical 
time. Such a federation execution typically exists if 
federates in a previous execution did not shut down 
correctly. 

 

 
Figure 1: Removal of orphaned federation 

Solution: After connecting to the RTI, a federate 
immediately destroys the federation execution. It then 
creates and joins the federation execution. In case the 
federation doesn’t exist anymore, since another federate 
just destroyed it, the federate needs to go back and try to 
create it. 

Discussion: Note how this pattern needs to handle the 
case when several federates are trying to join at almost the 
same time and may potentially destroy each other’s 
federation executions. This pattern also relies on the 
property that a federation execution cannot be destroyed, 
once a federate has successfully joined it. 

2.2. Centralized checking of required federates 

Requirement: a certain set of federates need to be present 
before the simulation can start. This may be for technical 
reasons, or to be able to perform a meaningful simulation. 

 
Figure 2: Check for required federates 

Solution: a designated federate is used, in this case the 
federate with the Master role. It has access to a list of the 
federate names of the required federates, for example in a 
configuration file. After joining the federation execution, 
it uses the HLA Management Object Model (MOM) to 
monitor which federates that have joined. When all 
required federates have joined, it registers the 
synchronization point “Initialization Started”. 

Other federates need to perform the following sequence. 
After joining, it checks if the synchronization point 
“Initialization Started” has been announced. If this 
synchronization point hasn’t been announced, the federate 
enters a wait loop, where it periodically checks if 
“Initialization Started” has been announced. When it has 
been announced, the federate will start the main 
initialization. 

Note that this pattern is extended later in the next pattern. 

Discussion: In this pattern, the availability of a 
synchronization point is used as a global flag. The pattern 
doesn’t require any particular start order between the 
Master federate and the required federates. The pattern 
will, to some degree, ensure that all required federates 
start the initialization process at the same time. 

2.3. Detection if a federate is a late joiner 

Requirement: This pattern applies to a federate that may 
execute as either an early joiner or a late joiner. Late 
joiner, in this context, means that the initialization has 
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already been completed. In case it joins a federation early, 
it needs to complete certain initialization steps. In case it 
joins late, different steps may need to be performed. 

 
Figure 3: Detection if a federate is a late joiner 

Solution: A designated federate, in this case the federate 
with the Master role, registers the synchronization point 
“Initialization Completed”. If this synchronization point 
hasn’t been announced, the federate will act as an early 
joiner and go through the initialization steps. Otherwise it 
will act as a late joiner and will go through the late joiner 
steps. 

Discussion: This pattern also uses the availability of a 
synchronization point as a global flag. Note that this 
pattern doesn’t guarantee that an early joiner federate 
enters the initialization steps in sync with other federates. 

(Initialization completed never achieved. 

2.4. Global configuration data in singleton instance 

Requirement: A federation needs to share a number of 
global properties, for example static data, such as epoch 
or references to important object instances or dynamic 
data, such as execution state. Storing static data in 
configuration files for each federate introduces a risk of 
mismatching data. 

 
Figure 4: Shared configuration data in singleton 

Solution: A dedicated federate registers an object 
instance of a particular object class with a specific HLA 
object instance name. The dedicated federate provides the 
attribute values. This may be based on configuration data 
provided to the dedicated federate, or by discovering data 
in the federation. Other federates will get the 
configuration data by subscribing to the particular object 
class. 

Discussion: In the Space Reference FOM, the federate 
with the Master role registers an object instance called 
“ExCO”, which stands for Execution Configuration 
Object. It contains information like the Epoch, current 
run/freeze mode, and name of the root reference frame. 

2.5. Synchronized multi-phase initialization 

Requirement: Before starting the main execution, 
federates need to exchange initial data. Some of the data 
cannot be calculated before some other data has been 
provided by some other federate. To be able to control 
and verify that all data has been provided, the federation 
needs to go through a specified set of initialization phases. 
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Figure 5: Multi-phase Initialization 

Solution: A number of named phases have been agreed 
upon in advance, each phase with corresponding named 
synchronization point. In the example in Figure 5 there 
are two phases called A and B. A dedicated federate role 
registers these synchronization points. It then achieves 
them, one by one. After achieving a synchronization 
point, it waits for the federation to be synchronized, 
before achieving the next synchronization point. 

Participating federates will perform the following for each 
phase: first send out initialization data, then achieve the 
synchronization point and finally wait for the federation 
being synchronized. 

Discussion: In the Space Reference FOM, the Master 
federate manages the multi-phase initialization. One 
advantage of this pattern is that it makes it easier to verify 
and potentially troubleshoot the initialization. 

2.6. Central execution control with transition 
requests 

Requirement: Federates need to transition between 
initializing mode, running mode, freeze mode and 
shutdown in a controlled manner. Any federate may need 
to request a mode transition. Since federates may use 
different time steps, or may need some time to transition, 
the transition may not happen immediately. Late joining 
federates must perform a required transition, even if the 
transition was requested before a federate joined. 

 
Figure 6: Requesting mode transitions 

Solution: A global object instance, in this case the 
Execution Configuration Object (ExCO), stores the 
current mode, as well as the next mode, together with the 
time for the next mode. Any federate can make requests 
for mode transitions, as shown in Figure 6. The Master 
federate will calculate an acceptable time for the mode 
transition and store this in the ExCO.  

 
Figure 7: Execution Modes and synchronization 

Mode transitions to Freeze or Run start with achieving a 
synchronization point, in order to synchronize federates 
that take different time to transition, as shown in Figure 7. 
Mode transitions to Shutdown do not use a 
synchronization point. Note that it is possible for the 
federation to go directly to shutdown, if a federate fails 
during initialization. 

All federates that produce data or have HLA Time 
Regulation turned on, must transition to the next state as 
specified in the ExCO. Data loggers and visualizers may 
not always take part in the state transitions. 

Interaction and Attribute Updates related to requesting 
and performing the state changes need to be sent using 
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Receive Order in a federation using HLA Time 
Management 

Discussion: Transitioning to shutdown needs special 
consideration in this pattern. An operator may require 
going to shutdown at any point in time, for example when 
a federate becomes unresponsive or faulty in other ways. 
A synchronization point cannot be used in this case, since 
unresponsive federates may never achieve a 
synchronization point, thus preventing the entire 
federation from shutting down. 

3. Time Management Design Patterns 
This section describes two patterns for managing time. 
The Space Reference FOM describes several time 
concepts, where some of the most important are: 

Scenario Time is the conceptual time associated with the 
physical systems that are modeled in the federates. 

HLA Logical Time is the time used by HLA to time-
stamp and order messages and to regulate time advance. 
The HLA logical time starts at zero. It can be related to 
the scenario time by providing an Epoch (starting point). 

Physical time or “real world time” in the Space 
Reference FOM is based on the classical Newtonian 
concept of absolute time, which is a simplification 
compared to the relativistic space-time concept.  

The patterns are: 

1. Constant but potentially different federate time 
steps 

2. Mix of paced scenario time and physical time 

The time management patterns are closely related to the 
execution control patterns, in particular the transition 
requests between the Run, Freeze and Shutdown modes. 
Here they are presented standalone, but to get the exact 
details, the reader is encouraged to read the Space 
Reference FOM.  

3.1. Constant but potentially different federate time 
steps 

Requirement: A number of federates that use time-
stepped simulation need to execute together in a 
federation. The time-steps are constant but may be 
different between federates. The federation needs to have 
well-defined points in time when the federation wide state 
is complete and consistent, for example for check-
pointing, snap-shooting or freeze of the federation.  

 
Figure 8: Federate and Federation time steps 

Description: A common Federation Time Step is agreed 
upon. The federate with the pacing role shall advance 
time using this time step, as shown in Figure 8. Any other 
federate shall advance time using a time step, called the 
Federate Time Step, that shall be an integer multiple n>=1 
of the Federation Time Step.  

Each federate has a native time step of its internal physics 
model, here called the Simulation Time Step. The 
Federate Time Step shall be an integer multiple n>=1 of 
the Simulation Time Step. 

The pattern guarantees that there will be recurring HLA 
Logical times to which all federates will be granted, here 
called Common Time Boundaries. These can be 
calculated as the least common denominator of all 
Federate Time Steps. 

Discussion: Many, but not all, physics simulations have 
configurable time steps, which facilitates the choice of 
federation time step. If one federate is less flexible in the 
choice of time step, this may strongly influence the choice 
of time step. The more important aspect, when selecting 
time steps for physical models, may be the resolution and 
fidelity that is required for a particular simulation 
purpose. 

3.2. Mix of paced scenario time and physical time 

Requirement: An HLA federation can accommodate 
both simulations running in soft real-time and simulators 
that use central timing equipment (CTE) (e.g., a GPS 
timing board) for hard real-time synchronization. The 
HLA federation is capable of going to freeze, and later 
resume. The simulations that synchronize using the CTE, 
must also be able to handle these mode transitions, which 
may be more demanding.  
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Figure 9: CTE time line and Scenario time line 

Description: The federation is regarded as having two 
time lines, the scenario time-line and the CTE time-line as 
shown in Figure 9. These are connected in Run mode but 
disconnected at Freeze mode. The federate with the 
Master role is responsible for connecting them when 
entering Run mode by calculating an offset (CTE epoch). 
This epoch specifies the offset between the CTE time and 
the scenario time.  

 
Figure 10: Advancing scenario time vs CTE time 

In Run mode, each CTE-based federate will perform a 
Time Advance Request, wait for the next CTE time and 
then check that a Time Advance Grant has been received, 
before simulating the next time step as shown in Figure 
10. 

Discussion: This pattern requires that the Master is also 
connected to the CTE. 

4. Spatial Design Patterns 
This section describes the patterns for handling spatial 
information. Space simulations may include assets that 

operate on or about celestial bodies other than the Earth.  
Therefore, there is no common reference frame of 
convenience for all space simulations.  Moreover, when 
modeling operations that span multiple celestial bodies, 
each federate may prefer to operate an asset in a local 
reference frame but the federation must relate those 
reference frames to each other using a common parent 
reference frame in order enable interaction.  For example, 
a simulation of a ground station on the Earth sending 
commands to a spacecraft orbiting Mars may simulate the 
ground station in an Earth-centered frame and the 
spacecraft in a Mars-centered frame but relates these two 
frames using a Solar System Barycenter frame.  The 
Space Reference FOM accomplishes this using two 
patterns:   

1. Reference frames are explicitly specified using 
object instances of a ReferenceFrame object; 

2. Reference frames are organized using a 
replaceable and extendable tree of 
ReferenceFrame objects. 

4.1. Reference Frames explicitly specified using 
object instances 

Requirement: Different models in a federation need to 
perform calculations related to positions that are 
geographically dispersed. It is conceptually and 
computationally inconvenient to perform all calculations 
using the same coordinate system.  

 
Figure 11: Reference Frame 

Description: Create one object instance of the 
ReferenceFrame class for each reference frame that is 
required.  Each ReferenceFrame is identified using a 
name.  Positions, for examples for a space vehicle, are 
given in relation to a named reference frame.  
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The Space Reference FOM defines a syntax for creating 
unambiguous reference frame names. Each 
ReferenceFrame object specifies a parent ReferenceFrame 
by name and the ReferenceFrame’s translational state 
(position and velocity) and rotational state (attitude and 
rotation rate) relative to the parent ReferenceFrame. 
Quaternions are used to describe orientation to avoid the 
singularities of Euler coordinates.  ReferenceFrames also 
specify the Terrestrial Time (TT) congruent with the 
translational and rotational state. 

Discussion: Many other FOMs use an implicit coordinate 
system, for example geodetic coordinates (latitude, 
longitude, and altitude). This becomes very inconvenient 
if you, for example, were to simulate the behavior of a 
rover on the surface of the moon using such Earth-based 
coordinates.  

4.2. Replaceable and Extendable Tree of Reference 
Frames 

Requirement: Need to translate coordinates between 
several different reference frames in order to determine 
spatial relationships between entities using different 
coordinate systems. Need to be able to switch between 
different reference frames during execution, for most 
convenient computations. Need to be able to use different 
sets of reference frames for different scenarios. Need to 
extend common and standardized reference frames with 
custom reference frames. 

 
Figure 12: Tree of Coordinate Systems  

Description: Structure the reference frames into one 
single directed acyclic graph (i.e. a tree). Each reference 
frame specifies its translational and rotational states with 
respect to the parent reference frame, except for the root. 
Translation between any two reference frames can be 
performed by traversing the graph to a common parent 
and performing the related transformations by using 
quaternion algebra. 

New reference frames can be dynamically added into the 
tree as needed. The actual tree may be different between 
different scenarios.  

To assure that all federates agree on the relative states 
between reference frames, a specialized federate 

calculates and publishes the translational and rotational 
states of the reference frames in the tree. The Space 
reference FOM requires that a designated Root Reference 
Frame Publisher exists in any federation. A reference to 
the root reference frame is stored in the ExCO object. 

Discussion: One advantage of this pattern is the 
opportunity to develop and reuse federates that simulate, 
for example, the bodies of the solar system. Alternate 
federates may provide different models with different 
fidelity. One disadvantage is the calculations needed to 
convert between different reference frames. However, in 
many space federates, this may always be required. 

5. Discussion 
5.1. Simpler and more advanced versions of the 

patterns 

The patterns described are available in three different 
versions that can be found in different documents: 

1. This paper presents these patterns “as simple as 
possible, but not simpler”. This makes the principles 
easier to understand. 

2. The Space Reference FOM provides the same 
patterns with all details that are necessary to 
implement them, in particular with the HLA service 
calls described. Anybody that wishes to implement a 
federate compliant with the Space Reference FOM 
should study these carefully. 

3. The IMSim document [8] presents even more 
extended versions, also including check pointing. 
This is interesting background reading for the 
advanced developer. Note that there are a number of 
differences between these patterns and the Space 
Reference FOM. 

5.2. Comparison to defense training federations 

The most widely used FOM in the defense training 
domain is the SISO Real-time Platform Reference FOM 
[9,10]. There are major differences between the Space 
Reference FOM and RPR FOM. Most of them are due to 
the fact that the RPR FOM replicates the behavior and 
information model of the earlier DIS [11] standard (which 
is based on the even older SIMNET framework) and 
seeks to maintain backwards compatibility. The Space 
Reference FOM represents a view of simulation 
interoperability that is at least one or two decades newer. 
Some key differences are: 

Reliable data exchange. The information exchange in the 
Space Reference FOM uses reliable communication, as 
opposed to best effort transportation in the RPR FOM. 

SolarSystemBarycentricInertial

SunCentricInertial MarsCentricInertialEarthMJ2000Eq

EarthFixed MoonCentricInertial

MoonFixed

MarsFixed



	

Causality and repeatability. The use of time managed 
delivery of updates and federate time advance in the 
Space Reference FOM guarantees correct delivery order 
between federates, which is required for causality and 
repeatability. Not only may RPR FOM updates be 
delivered in the past of a federates logical time, they may 
even be lost. 

Well-managed set of federates. The required federates in 
a Space FOM federation are explicitly checked during 
startup. No corresponding mechanism is specified in the 
RPR FOM. 

Coordinated initialization. The Space Reference FOM 
provides several explicit mechanisms for coordinated 
initialization of the federation and its initial state. There is 
no such mechanism in the RPR FOM. 

Synchronization. Federates may take some time to go 
between run, freeze and shutdown. The Space Reference 
FOM guarantees that no simulation starts before all 
systems are ready. In the RPR FOM, all federates can be 
seen as “free-running” and starting their simulation 
independently after a freeze. Coordinated shutdown isn’t 
supported. 

Support for soft real-time and Central Timing 
Equipment. The Space Reference FOM allows for any 
mix of soft real-time synchronized and central timing 
equipment. The RPR FOM is commonly used with GPS 
time or similar for time stamping, but there is no 
coordination between the GPS time and the delivery of 
updates with such time stamps.  

Use of multiple reference frames. The Space Reference 
FOM supports any number of reference frames, together 
with a system for translation between them. This enables 
simulations to use reference frames that are 
computationally convenient for them. The RPR FOM 
implicitly use geocentric coordinates, which may work for 
Earth centric simulations, but are inconvenient for space 
simulation. Note that the RPR FOM supports Relative 
Spatial attributes for relating entities to other “parent” 
entities. 

6. Conclusions  
A number of design patterns and principles from the 
Space Reference FOM have been presented. The patterns 
relate to three areas: execution control, time management 
and spatial design with reference frames. All simulations 
in the space domain need to implement solutions for these 
areas, even for running standalone. When several space 
simulations are federated, handling of initialization, time 
and space are the fundamental areas that need to be 
addressed, before higher level processes, like space travel, 

can be addressed. This is why these areas are the focus of 
the first version of the Space Reference FOM. 

6.1. Sharing knowledge inside and outside of the 
Space simulation community 

The main purpose of the paper is to introduce the patterns 
and design principles to developers of distributed 
simulation in the space domain. The Space Reference 
FOM is already getting attention from developers and 
organizations outside of the current SISO PDG, which is 
promising. A prerelease of the Space Reference FOM was 
also used in the SEE 2017 university outreach program. 

A secondary purpose is to share them with simulation 
developers from other domains. Indeed, although the 
presented design principles and patterns have been 
conceived with reference to the Space domain, most of 
the resulting solutions are domain independent and could  
be exploitable in other application domains with no or 
limited modifications. Through SISO and other 
organization we can exchange ideas, learn from each 
other and advance the state of the art. 
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