
	

Towards a Standardized
Federate Protocol for HLA 4

Björn Möller

bjorn.moller@pitch.se

Fredrik Antelius
fredrik.antelius@pitch.se

Mikael Karlsson
mikael.karlsson@pitch.se

Pitch Technologies
Repslagaregatan 25

582 22 Linköping, Sweden

Keywords: HLA, Interoperability, Protocol

ABSTRACT: HLA is a powerful interoperability standard with a rich set of services for information exchange,
synchronization and management of federations. These services are accessed through a local RTI library, installed on
the same computer as the simulation itself. As new and improved RTI versions are released, or if the user wants to switch
RTI supplier, these libraries need to be replaced. What if there were instead a simple protocol that a simulation could
use to access the HLA services?

This paper proposes such a protocol for HLA 4. It partly builds on experiences from the Web Services API in HLA
Evolved. The WS API proves the concept, but has several shortcomings dues to its use of blocking calls and use of XML.
An optimized, streaming, binary protocol is instead suggested. Such a protocol would make it easy to add a small and
generic library to any federate. Switching RTI libraries would then be a simple operation of connecting to a different
network address.

Additional advantages are that it makes it easy to provide native HLA support for any language, like C# or Python, to
execute in CPU-constrained or hard real-time environments, to communicate in mobile environments, like 3G or 4G, or
even to embed HLA support in hardware equipment. It can also be used to avoid re-accreditation of simulations, since
the accredited simulator need not be updated.

Some design considerations include discovery, session management and latency handling.

Early test implementations have shown performance close to current RTI performance and improved fault tolerance over
WAN links. To be able to easily swap between different RTI implementations, a standardized protocol is now being
proposed to the HLA 4 Product Development Group.

	

1. Introduction
The High-Level Architecture (HLA) [1], standardized as
IEEE-1516, is an interoperability standard for building
distributed simulations. It provides services for exchanging
information, coordination and synchronization as well as
management of participating simulations. Some examples
of the functionality that the HLA services provide are:

• Information exchange: Publish/subscribe of
objects with attributes and interactions with
parameters.

• Coordination and synchronization: Time
managed exchange of time-stamped data.
Federation-wide synchronization using
synchronization points. Transfer of ownership.

• Management: Managed set of federates.
Monitoring of federates, services usage and data
exchange.

The recommended way for describing the logical structure
of simulations that interoperate using HLA is the “lollipop”
diagram, as shown in Figure 1.

Figure 1: Lollipop diagram of an HLA federation

Each participating system is called a federate and together
they form a federation. Each federate connects to the Run-
time Infrastructure (RTI) that provides the HLA services
defined in the standard. In addition to this, a Federation
Object Model (FOM) is used. This is an XML file with
federation specific information, such as the types of objects
and interactions that are used in a particular domain.

The HLA standard was originally developed in the 90’s
and is revised regularly. The most recent version was
released in 2010. A new version, currently nick-named
“HLA 4”, is planned to be released 2018-2019.

1.1. Providing HLA services using an API

The HLA services are defined in a generic format, with
parameters, return values, preconditions and
postconditions. In addition to the generic specification,
there are bindings for the C++ and Java programming
languages. In order for a federate to use HLA, a C++ or
Java library that implements these services is required.

This is called the Local RTI Component (LRC). In most
cases a separate application, called the Central RTI
Component (CRC) is also used, in particular for centrally
coordinated services, such as keeping track of the current
set of joined federates and their logical time. This means
that the physical deployment of a typical HLA federate
looks like Figure 2.

Figure 2: Physical deployment of an HLA federation

A federate makes calls and get callbacks from the LRC
library through one of the APIs. The complexity of network
communication and synchronization with other federates
are handled by the RTI. This architectural style is also
known as message-oriented middleware [2].

When developing an RTI and implementing the services,
distributed algorithms for proper information exchange
and synchronization must be designed. A network protocol
that supports these algorithms must also be designed.
Different RTI implementations have chosen different
algorithms and therefore different protocols and refined
them over time for performance, scalability and fault
tolerance. Most RTIs use TCP/IP, in many cases with UDP
and multicast, but RTIs based on shared or reflective
memory have also been developed.

This means that the network protocol is different between
different RTI implementations, and often also between
different versions of the same RTI. It is thus necessary to
have the same version of the RTI library installed for every
federate in a federation.

When the initial HLA specification was developed, it was
decided to specify HLA as a set of services, and to not
specify a protocol. This would enable evolution and
innovation, while avoiding lock-in into a particular
technology or implementation. Going from a protocol
standard, like the predecessor DIS [3], to a services
standard, based on message-oriented middleware, caused
some criticism within the SISO community.

However, the technical evolution in performance and
robustness that has taken place in RTI implementations
over the last 20 years wouldn’t have been possible if a
protocol was specified in the 90’s by a standards
committee. It is also unlikely that most federate developers

Federate
(simulation)

Federate
(simulation)

Federate
(simulation)

Runtime	Infrastructure	 – RTI FOM

Federate	A

Local	RTI	
Component	
(Library)

Host

Federate	B

Local	RTI	
Component	
(Library)

Host

Central	RTI	
Component	
(Application)

Host

Network

	

would have been able to use such a protocol directly,
without some kind of middleware.

1.2. Providing HLA Services over a Protocol

Still, for some purposes, a standardized protocol can be an
advantage. What if the HLA services themselves were
provided as a protocol, instead of as an API? In that case,
different federate implementations could access different
RTI implementations, just like different web browser
implementations can access different web server
implementations, as long as they properly implement the
standardized protocol.

This is the approach that this paper seeks to investigate. In
this case, a federate could call an RTI component over a
standardized protocol. RTI implementations could still use
different algorithms inside. The federate and its technical
environment could be separated from the RTI
implementation. The difference between the API approach
and the protocol approach is shown in Figure 3.

Figure 3: API versus Protocol

In the API case, shown to the left, a service, in this case
Join Federation Execution, is called using an API to an
LRC library executing in the same process and on the same
host. In the protocol case, shown to the right, the same
service is called using a communications protocol to an
LRC executing in a different process. What traditionally
was the LRC can now operate on the same or different host.
Due to the smaller software stack required in the federate
process, this approach has sometimes been nick-named
“Thin HLA”. The approach allows for several different
topologies, as shown in Figure 4.

Figure 4: LRCs in different topologies

The full RTI implementation can be installed either
centrally, on separate hosts or the same host as the
federate. It is also possible to mix these deployments.

1.3. Building upon the Web Services API

Such a protocol was indeed introduced in HLA Evolved
(IEEE 1516-2010). It is based on Web Services and is
defined using the Web Services Description Language
(WSDL). The Web Services API [4] implements all HLA
services. It can run over http or https, including
authentication. The performance is acceptable, typically
thousands of updates per second, is useful for some
implementations, but not all. It proves that implementing
the HLA services as a protocol is feasible.

At the same time, it isn’t optimal for many applications.
Calls are made using a request-response pattern and the
HTTP protocol. This means that, after sending an update,
it blocks and waits for a response, which may be time
consuming. The requests and responses are encoded using
XML and SOAP, which requires a lot of CPU resources
and additional libraries to process, and may, in some cases,
be cumbersome to handle in an application.

1.4. Towards a Binary Format

This paper proposes a simplistic binary format that would
build on experiences from the WSDL API but avoid some
drawbacks. The protocol would use a more efficient
encoding with smaller footprint. It would not necessarily
be blocking. This would mean that updates can have
“streaming” characteristics. It would also be easier to
implement, for example in resource constrained
environments.

2. Opportunities with a Federate Protocol
This protocol would make it possible or easier to build
solutions that are difficult or impossible today. Below are
a number of use cases for a federate protocol.

2.1. Support any programming language or OS

Programming languages come and go over time. As new
languages become popular for simulation development,
users request HLA support for them. A federate protocol
would make it considerably easier to implement HLA

Federate

RTI	Lib	(LRC)

Network

Federate

Network

“Join”	network	packet

Standardized	API Standardized	protocol

“Join”	API	call

RTI	Lib	(LRC)
w Server

Network

Federate

LRC LRC

Host

Federate

Host

Host

Federate

Host

Federate

Host

LRC

Host

LRC

Host

Federate

Host

Federate

Host

LRC LRC

Centralized	LRCs Separate	LRC	hosts Local	LRCs

	

support in any language, like C#, Pearl or Python. Today,
adding a new programming language either means porting
the LRC library to another programming language or
creating a bridge between code in two different languages.
Instead, the federate could make these calls using a binary
protocol, possibly with a small reusable stack for each new
language.

Figure 5: Different implementation languages or OSs

The effort to implement HLA support for a new
programming language would be significantly reduced.
This approach is also useful for deployment in specialized
operating systems, for example real-time operating
systems or embedded systems, where it may be difficult or
undesirable to deploy the entire LRC functionality.

2.2. Support Live simulation and unreliable links

Another use case is for live simulation and any situation
where the network connection has limited bandwidth and
may be unreliable. The full LRC is deployed on the
network backbone, with reliable connection to the rest of
the federation. Only the data that the federate actually
needs will be sent over the unreliable link, as shown in
Figure 6.

Figure 6: Live Simulation using a Federate Protocol

The fault tolerance is significantly improved. In case of
temporary disconnects, the state of the LRC isn’t lost.
Another advantage is that the protocol would only need one
point-to-point connection, which is preferred for
communication over for example mobile Internet links.

2.3. Mix Cloud and local resources

Another use case is to deploy the LRC as a service in the
Cloud, for example with a commercial cloud provider or a
private cloud. This would enable federates to connect from
many different geographical locations, even behind
firewalls, and form a federation as shown in Figure 7

Figure 7: Cloud deployment using a Federate Protocol

Some federates, such as Computer Generated Forces
(CGFs), could run in the Cloud environment. Other
federates, for example virtual simulations, could run
locally.

2.4. Simplify switching between RTIs

To switch between different RTI implementations or to
upgrade from one version to another today requires
installing new software on the same computer as the
federate. If several different RTI implementations need to
be available, it is common to perform parallel installations
and to provide different search paths to the federate
application. With a federate protocol, it is only necessary
to provide the network address of a different RTI

2.5. Reduce cost for accreditation

Today, when a federate has already been accredited, it may
be a major and costly effort to switch RTI version or RTI
provider. Such a switch may be necessary if an accredited
simulator needs to participate in a federation that use a
different RTI implementation. If the federate protocol is
used, no files need to be installed or replaced on the
accredited simulation host.

2.6. Security

A federate protocol is useful for secure simulation in at
least two ways since it can make both the network
communications and the protocol stack easier to inspect.

When running federates in the same federation in different
security domains, the data exchange may need to be
inspected at the security domain borders. A standardized

Federate	in
Language	A

Host

LRC	in
Language	B

Protocol

Federate	in
Language	A

Real-time	OS

LRC	in
Language	B

Protocol

Host

Host

LRC LRC

Host CGF

Host

LRC

Visualizer

Host

LRC

3G/4G
Radio

3G/4G
Radio

LRC LRC

CGF

LRC

Visualizer

Cloud

LRC

FederateFederate

Site	A Site	B

Protocol Protocol

	

federate protocol makes it more attractive to build reusable
or even COTS/GOTS solutions for this purpose.

The Local RTI Components of an RTI contain a lot of
vendor-specific, proprietary code that may not be easily
available for auditing and inspection. This means that the
LRCs may not be approved for use in certain high-security
environments.

The client side of the Federate Protocol can be quite small,
even constructed in-house, thereby making it possible to
use HLA in a high-security environment.

2.7. Add native HLA support to hardware equipment

With a standardized federate protocol it is easier to include
HLA support inside hardware equipment, for example
sensors.

3. Lessons Learned from Earlier Work
This section takes a deeper look at lessons learned from
practical experimentation.

3.1. Lessons learned from the WSDL protocol

The Web Services API hasn’t been widely adopted by
users, although RTIs that implements it exist and it has
been mentioned in numerous academic papers. Federate
development is somewhat cumbersome. There is good
support in many languages for making Web Services calls,
but not for parsing the RTI callbacks that are returned from
an Evoke Callback service call. Processing a high rate of
XML calls and callbacks consumes a lot of CPU cycles,
which in many cases is a bigger problem than the bulkiness
of XML.

Another, not so obvious issue, is that the http
request/response pattern is blocking which means that each
request must be confirmed by a response before a new
request can be made. This makes it sensitive to latency. As
an example, with a round-trip latency of 10 ms it is only
possible to make 100 calls per second. HLA service calls
may depend on each other so they cannot be performed in
parallel. As an example, the result of calling Join
Federation Execution and Send Interaction in parallel
would be unpredictable.

Mixing different programming languages between the
federate and the LRC has been tested using the WSDL API.
One use case is for supporting C# using the Web Services
API. It worked well, but parsing call-backs was
cumbersome, as previously described.

3.2. Issues with moving to a protocol

When an API is used, many syntactic errors, like providing
the wrong number of parameters, are detected during
development and compilation. In a protocol-based

solution, these kinds of errors may occur at runtime and
create a need for new types of error messages. To minimize
problems like this, e.g. missing parameters, malformed
messages, etc, it is popular to develop and reuse software
stacks, which would be a good idea also for a federate
protocol. For a protocol, debugging is considerably more
difficult, since the data is exchanged over a network as a
one piece of raw data.

3.3. Lessons learned from testing in Live
environments

A prototypical federate protocol has been tested in an
application with live entities. Several vehicles in a test
range were connected using GPRS/3G mobile broadband.
The traditional LRC topology and the “thin HLA” topology
were both tested. The federation contained around one
hundred vehicles using the RPR FOM [5]. The most
interesting observation was when the 3G link suffered
interrupts every now and then. The time to re-join the
federation, for a federate that lost connection, was in the
range of minutes for the traditional LRC approach, but only
a few seconds when using the federate protocol.

The challenge here is to maintain the integrity of the
distributed state, since the Local RTI Components need to
stay in constant touch with each other. Whenever the
connection between one LRC and other LRCs is lost, e.g.
due to a temporary disruption, the LRC may need to resign
and re-join the federation to ensure correct state. This puts
a very heavy burden on the federation.

Using the federate protocol, this problem can be solved by
locating the LRC on a reliable network and then have the
federate connect to the LRC over the less reliable network.
Any disruptions on the less reliable network will not cause
the LRC to drop out of the distributed state.

4. Design Challenges
Developing a binary protocol based on the experiences
from the Web Services API is quite straightforward. There
are however some challenges that need to be solved.

4.1. Supporting different environments

The technical approach chosen shall have support for a
large number of technical environments. If a code
generator for encoding/decoding is used, it shall support
many relevant programming languages. If communications
or encoding libraries are required at runtime, these shall be
available in as many relevant environments as possible. If
possible, the use of such libraries shall be optional .

4.2. Optimized encoding

The encoding/decoding and data exchange shall require as
little CPU and memory as possible. The need for copying
of data between buffers shall be minimized.

	

4.3. Optimizing for high-latency environments

A protocol should be able to handle high-latency
environments. One important approach is to enable
federates to send many updates and interactions, without
necessarily waiting for the outcome of a previous call, i.e.
“blocking calls”. This would create an asynchronous
behaviour in the protocol, as shown in Figure 8.

Figure 8: Asynchronous mode

This can be seen as postponed exception checking. A
federate may want to perform some operations, like Join
Federation Execution, with a conservative approach
(waiting for a response), but others, like updates, with
postponed exception checking.

4.4. Optimizing for fault tolerance

The federate protocol should also be designed for
maximum fault tolerance. It could build upon TCP in order
to get automatic retransmission of lost packages. Faults
either need to be handled or propagated. Faults that could
be handled include recovery from a broken TCP
connection. This could be achieved by introducing a
session token and retransmission of unconfirmed packages
(unless they use best effort transportation).

5. Discussion
5.1. Need for a standard

While proprietary versions of a binary HLA federate
protocol have been developed, a standardized protocol has
several advantages. It would make it possible for federate
developers to switch RTIs, and avoid vendor lock-in. It
would make it more attractive to developers to use the
protocol. It would also capture the expertise of more HLA
experts during the design. It would increase the support for
more technical environments without needing to rely on a
particular RTI supplier to support each effort.

5.2. Reuse the standard C++ and Java APIs

Considering a client software stack that implements the
HLA federate protocol, should this client software have the
same API as the programming language bindings in the
HLA standard. For previously unsupported languages, like
C#, Perl or Python, there are no such APIs, so this is less
of a concern. For C++ and Java, there are several
advantages with keeping the same API. A federate can then
easily switch between a standard LRC and the “Thin HLA”
software stack. The drawback is that this may force the
stack to use blocking calls, which would reduce the
performance significantly, compared to the asynchronous
approach, where the calls aren’t blocking.

5.3. Asynchronous API

An API that supports the asynchronous model could be
very useful for federate developers. Such an API could be
closely aligned with existing APIs or it could be very
different. One approach would be to reuse the current API
but to introduce a delayed exception callback that reports
exceptions asynchronously.

5.4. Relationship to WebLVC

A SISO standard called WebLVC [7] is currently under
development. The main focus is as follows: “WebLVC is a
protocol for enabling web and mobile applications
(typically JavaScript applications running in a web
browser) to play in traditional M&S federations (which
may be using Distributed Interactive Simulation (DIS),
High Level Architecture (HLA), Test and Training
Enabling Architecture (TENA), or related protocols and
architectures)” [8]. A typical WebLVC protocol message
presents the data of an object instance, such as a military
platform or an interaction, such as a firing event, in
Javascript Object Notation (JSON) [8] notation.

The authors would like to argue that the purpose and scope
of WebLVC and the proposed federate protocol are very
different. The WebLVC standard is best suited for
providing data for a particular domain, like defense, to a
web browser. The proposed federate protocol, on the other
hand, provides the entire set of HLA services to many
different environments for any domain, but may not
provide the convenience of JSON for Javascripts
applications in a web browser.

6. Conclusion and Road Ahead
A standardized HLA federate protocol offers several new
opportunities as well as solutions to several issues that
exists with HLA today. The most important ones are better
support for Cloud deployment, Live applications and
additional programming languages.

	

As HLA is currently under revision, a formal comment
proposing a federate protocol has been submitted. This
comment includes forming a Tiger Team to capture the
input from interested users, vendors and academia.

References

[1] IEEE: "IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture
(HLA)", IEEE Std 1516-2010, IEEE Std 1516.1-
2010, and IEEE Std 1516.2-2010, www.ieee.org,
August 2010.

[2] “Message Oriented Middleware”, Wikipedia,
retrieved 2017-06-26

[3] IEEE: “IEEE Standard for Distributed Interactive
Simulations”, IEEE Std 1278.1-2012,
www.ieee.org, December 2012

[4] SISO: “SISO-STD-001.1-2015, Standard for
Real-time Platform Reference Federation Object
Model (RPR FOM)”, www.sisostds.org,
September 2015.

[5] Björn Möller et al.: “RPR FOM 2.0: A Federation
Object Model for Defense Simulations”, 2014 Fall
Simulation Interoperability Workshop, (paper
14F-SIW-039), Orlando, FL, 2014.

[6] WebLVC, www.sisostds.org

	

Author Biographies

BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
development of Pitch’s products. He has more than
twenty-five years of experience in high-tech R&D
companies, with an international profile in areas such
as modeling and simulation, artificial intelligence and
web-based collaboration. Björn Möller holds a M.Sc.
in Computer Science and Technology after studies at
Linköping University, Sweden, and Imperial College,
London. He is currently serving as the chairman of the
Space FOM Product Development group and the vice
chairman of the SISO HLA Evolved Product
Development Group. He was recently the chairman of
the SISO RPR FOM Product Development Group.

FREDRIK ANTELIUS is a Senior Software
Architect at Pitch and is a major contributor to several
commercial HLA products, including Pitch Developer
Studio, Pitch Recorder, Pitch Commander and Pitch
Visual OMT. He holds an M.Sc. in Computer Science
and Technology from Linköping University, Sweden.

MIKAEL KARLSSON is the Infrastructure Chief
Architect at Pitch overseeing the world’s first
certified HLA IEEE 1516 RTI as well as the first
certified commercial RTI for HLA 1.3. He has more
than ten years of experience of developing simulation
infrastructures based on HLA as well as earlier
standards. He also serves on several HLA standards
and working groups. He studied Computer Science at
Linköping University, Sweden.

.

	

Appendix A: Sample HLA Federate Protocol Excerpt

To illustrate what a federate protocol could look like, the following example is provided. It is based on early
prototyping.

Three sample packet layouts are provided:

1. A Create Federation Execution service invocation packet, with the name “Test1” and using only one FOM
module called “a1.xml”.

2. A return packet for a successful invocation
3. A return packet with an exception “Federation Execution Already Exists”

The header contains four fields:

1. The length of the package
2. The message code. Codes 0-99 are used for session setup, teardown and similar purposes. Codes 100 and up

are used for HLA service invocations.
3. The session ID is used to identify the session, for example when several federates are serviced by the same

server.
4. The call ID is used to match call and return packets.

Message	size

60

Message	code

102	(Create	Fed	Ex)

0

4	bytes 4	bytes

Session	ID

0x0000F5F8

Call	ID	(sequence)

7

8

String	Length	(double	bytes)

5

Char	1-2

“Te”

16

Char	3-4	

“st”

Char	5	+	padding

“1”	+	0x0000

24

Parameter:	 Federation	Execution	Name

String	count

1

String	Length	(double	bytes)

6

32

Char	1-2	

“a1”

Char	3-4

“.x”

40

Parameter:	 FOM	Modules

Char	5-6	

“ml”

48

Parameter:	 MIM	Designator

String	Length	(double	bytes)

0

String	Length	(double	bytes)

0

56

Parameter:	 Logical	Time

CALL
Message	size

16

Message	code

3	(Service	Return)

0

4	bytes 4	bytes

Session	ID

0x0000F5F8

Call	ID	(sequence)

7

8

RETURN	- OK

Message	size

36

Message	code

4 (Exception)

0

4	bytes 4	bytes

Session	ID

0x0000F5F8

Call	ID	(sequence)

7

8

Exception	Code

1	(Already	exists)

16

RETURN	- EXCEPTION

String	Length	(double	bytes)

5

Char	1-2

“Te”

Char	3-4	

“st”

Char	5	+	padding

“1”	+	0x0000

24

32

Exception	Type	and	Description

