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ABSTRACT: HLA is a powerful interoperability standard with a rich set of services for information exchange, 
synchronization and management of federations. These services are accessed through a local RTI library, installed on 
the same computer as the simulation itself. As new and improved RTI versions are released, or if the user wants to switch 
RTI supplier, these libraries need to be replaced. What if there were instead a simple protocol that a simulation could 
use to access the HLA services? 
 
This paper proposes such a protocol for HLA 4. It partly builds on experiences from the Web Services API in HLA 
Evolved. The WS API proves the concept, but has several shortcomings dues to its use of blocking calls and use of XML. 
An optimized, streaming, binary protocol is instead suggested. Such a protocol would make it easy to add a small and 
generic library to any federate. Switching RTI libraries would then be a simple operation of connecting to a different 
network address. 
 
Additional advantages are that it makes it easy to provide native HLA support for any language, like C# or Python, to 
execute in CPU-constrained or hard real-time environments, to communicate in mobile environments, like 3G or 4G, or 
even to embed HLA support in hardware equipment. It can also be used to avoid re-accreditation of simulations, since 
the accredited simulator need not be updated. 
 
Some design considerations include discovery, session management and latency handling. 
 
Early test implementations have shown performance close to current RTI performance and improved fault tolerance over 
WAN links. To be able to easily swap between different RTI implementations, a standardized protocol is now being 
proposed to the HLA 4 Product Development Group. 



	

1. Introduction 
The High-Level Architecture (HLA) [1], standardized as 
IEEE-1516, is an interoperability standard for building 
distributed simulations. It provides services for exchanging 
information, coordination and synchronization as well as 
management of participating simulations. Some examples 
of the functionality that the HLA services provide are: 

• Information exchange: Publish/subscribe of 
objects with attributes and interactions with 
parameters. 

• Coordination and synchronization: Time 
managed exchange of time-stamped data. 
Federation-wide synchronization using 
synchronization points. Transfer of ownership. 

• Management: Managed set of federates. 
Monitoring of federates, services usage and data 
exchange.  

The recommended way for describing the logical structure 
of simulations that interoperate using HLA is the “lollipop” 
diagram, as shown in Figure 1. 

 

 
Figure 1: Lollipop diagram of an HLA federation 

Each participating system is called a federate and together 
they form a federation. Each federate connects to the Run-
time Infrastructure (RTI) that provides the HLA services 
defined in the standard. In addition to this, a Federation 
Object Model (FOM) is used. This is an XML file with 
federation specific information, such as the types of objects 
and interactions that are used in a particular domain. 

The HLA standard was originally developed in the 90’s 
and is revised regularly. The most recent version was 
released in 2010. A new version, currently nick-named 
“HLA 4”, is planned to be released 2018-2019. 

1.1. Providing HLA services using an API 

The HLA services are defined in a generic format, with 
parameters, return values, preconditions and 
postconditions. In addition to the generic specification, 
there are bindings for the C++ and Java programming 
languages. In order for a federate to use HLA, a C++ or 
Java library that implements these services is required. 

This is called the Local RTI Component (LRC). In most 
cases a separate application, called the Central RTI 
Component (CRC) is also used, in particular for centrally 
coordinated services, such as keeping track of the current 
set of joined federates and their logical time. This means 
that the physical deployment of a typical HLA federate 
looks like Figure 2. 

 
Figure 2: Physical deployment of an HLA federation 

A federate makes calls and get callbacks from the LRC 
library through one of the APIs. The complexity of network 
communication and synchronization with other federates 
are handled by the RTI. This architectural style is also 
known as message-oriented middleware [2].  

When developing an RTI and implementing the services, 
distributed algorithms for proper information exchange 
and synchronization must be designed. A network protocol 
that supports these algorithms must also be designed. 
Different RTI implementations have chosen different 
algorithms and therefore different protocols and refined 
them over time for performance, scalability and fault 
tolerance. Most RTIs use TCP/IP, in many cases with UDP 
and multicast, but RTIs based on shared or reflective 
memory have also been developed. 

This means that the network protocol is different between 
different RTI implementations, and often also between 
different versions of the same RTI. It is thus necessary to 
have the same version of the RTI library installed for every 
federate in a federation. 

When the initial HLA specification was developed, it was 
decided to specify HLA as a set of services, and to not 
specify a protocol. This would enable evolution and 
innovation, while avoiding lock-in into a particular 
technology or implementation. Going from a protocol 
standard, like the predecessor DIS [3], to a services 
standard, based on message-oriented middleware, caused 
some criticism within the SISO community.  

However, the technical evolution in performance and 
robustness that has taken place in RTI implementations 
over the last 20 years wouldn’t have been possible if a 
protocol was specified in the 90’s by a standards 
committee. It is also unlikely that most federate developers 
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would have been able to use such a protocol directly, 
without some kind of middleware.  

1.2. Providing HLA Services over a Protocol 

Still, for some purposes, a standardized protocol can be an 
advantage. What if the HLA services themselves were 
provided as a protocol, instead of as an API? In that case, 
different federate implementations could access different 
RTI implementations, just like different web browser 
implementations can access different web server 
implementations, as long as they properly implement the 
standardized protocol.  

This is the approach that this paper seeks to investigate. In 
this case, a federate could call an RTI component over a 
standardized protocol. RTI implementations could still use 
different algorithms inside. The federate and its technical 
environment could be separated from the RTI 
implementation. The difference between the API approach 
and the protocol approach is shown in Figure 3. 

 
Figure 3: API versus Protocol 

In the API case, shown to the left, a service, in this case 
Join Federation Execution, is called using an API to an 
LRC library executing in the same process and on the same 
host. In the protocol case, shown to the right, the same 
service is called using a communications protocol to an 
LRC executing in a different process. What traditionally 
was the LRC can now operate on the same or different host. 
Due to the smaller software stack required in the federate 
process, this approach has sometimes been nick-named 
“Thin HLA”. The approach allows for several different 
topologies, as shown in Figure 4.  

 

 
Figure 4: LRCs in different topologies 

The full RTI implementation can be installed either 
centrally, on  separate hosts or the same host as the 
federate. It is also possible to mix these deployments. 

1.3. Building upon the Web Services API 

Such a protocol was indeed introduced in HLA Evolved 
(IEEE 1516-2010). It is based on Web Services and is 
defined using the Web Services Description Language 
(WSDL). The Web Services API [4] implements all HLA 
services. It can run over http or https, including 
authentication. The performance is acceptable, typically 
thousands of updates per second, is useful for some 
implementations, but not all. It proves that implementing 
the HLA services as a protocol is feasible. 

At the same time, it isn’t optimal for many applications. 
Calls are made using a request-response pattern and the 
HTTP protocol. This means that, after sending an update, 
it blocks and waits for a response, which may be time 
consuming. The requests and responses are encoded using 
XML and SOAP, which requires a lot of CPU resources 
and additional libraries to process, and may, in some cases, 
be cumbersome to handle in an application. 

1.4. Towards a Binary Format  

This paper proposes a simplistic binary format that would 
build on experiences from the WSDL API but avoid some 
drawbacks. The protocol would use a more efficient 
encoding with smaller footprint. It would not necessarily 
be blocking. This would mean that updates can have 
“streaming” characteristics. It would also be easier to 
implement, for example in resource constrained 
environments. 

2. Opportunities with a Federate Protocol 
This protocol would make it possible or easier to build 
solutions that are difficult or impossible today. Below are 
a number of use cases for a federate protocol. 

2.1. Support any programming language or OS 

Programming languages come and go over time. As new 
languages become popular for simulation development, 
users request HLA support for them. A federate protocol 
would make it considerably easier to implement HLA 
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support in any language, like C#, Pearl or Python. Today, 
adding a new programming language either means porting 
the LRC library to another programming language or 
creating a bridge between code in two different languages. 
Instead, the federate could make these calls using a binary 
protocol, possibly with a small reusable stack for each new 
language. 

 
Figure 5: Different implementation languages or OSs 

The effort to implement HLA support for a new 
programming language would be significantly reduced. 
This approach is also useful for deployment in specialized 
operating systems, for example real-time operating 
systems or embedded systems, where it may be difficult or 
undesirable to deploy the entire LRC functionality. 

2.2. Support Live simulation and unreliable links 

Another use case is for live simulation and any situation 
where the network connection has limited bandwidth and 
may be unreliable. The full LRC is deployed on the 
network backbone, with reliable connection to the rest of 
the federation. Only the data that the federate actually 
needs will be sent over the unreliable link, as shown in 
Figure 6.  

 
Figure 6: Live Simulation using a Federate Protocol 

The fault tolerance is significantly improved. In case of 
temporary disconnects, the state of the LRC isn’t lost. 
Another advantage is that the protocol would only need one 
point-to-point connection, which is preferred for 
communication over for example mobile Internet links. 

2.3. Mix Cloud and local resources 

Another use case is to deploy the LRC as a service in the 
Cloud, for example with a commercial cloud provider or a 
private cloud. This would enable federates to connect from 
many different geographical locations, even behind 
firewalls, and form a federation as shown in Figure 7  

 
Figure 7: Cloud deployment using a Federate Protocol 

Some federates, such as Computer Generated Forces 
(CGFs), could run in the Cloud environment. Other 
federates, for example virtual simulations, could run 
locally. 

2.4. Simplify switching between RTIs 

To switch between different RTI implementations or to 
upgrade from one version to another today requires 
installing new software on the same computer as the 
federate. If several different RTI implementations need to 
be available, it is common to perform parallel installations 
and to provide different search paths to the federate 
application. With a federate protocol, it is only necessary 
to provide the network address of a different RTI 

2.5. Reduce cost for accreditation 

Today, when a federate has already been accredited, it may 
be a major and costly effort to switch RTI version or RTI 
provider. Such a switch may be necessary if an accredited 
simulator needs to participate in a federation that use a 
different RTI implementation. If the federate protocol is 
used, no files need to be installed or replaced on the 
accredited simulation host. 

2.6. Security 

A federate protocol is useful for secure simulation in at 
least two ways since it can make both the network 
communications and the protocol stack easier to inspect. 

When running federates in the same federation in different 
security domains, the data exchange may need to be 
inspected at the security domain borders. A standardized 
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federate protocol makes it more attractive to build reusable 
or even COTS/GOTS solutions for this purpose.  

The Local RTI Components of an RTI contain a lot of 
vendor-specific, proprietary code that may not be easily 
available for auditing and inspection. This means that the 
LRCs may not be approved for use in certain high-security 
environments. 

The client side of the Federate Protocol can be quite small, 
even constructed in-house, thereby making it possible to 
use HLA in a high-security environment. 

2.7. Add native HLA support to hardware equipment 

With a standardized federate protocol it is easier to include 
HLA support inside hardware equipment, for example 
sensors. 

3. Lessons Learned from Earlier Work 
This section takes a deeper look at lessons learned from 
practical experimentation. 

3.1. Lessons learned from the WSDL protocol 

The Web Services API hasn’t been widely adopted by 
users, although RTIs that implements it exist and it has 
been mentioned in numerous academic papers. Federate 
development is somewhat cumbersome. There is good 
support in many languages for making Web Services calls, 
but not for parsing the RTI callbacks that are returned from 
an Evoke Callback service call. Processing a high rate of 
XML calls and callbacks consumes a lot of CPU cycles, 
which in many cases is a bigger problem than the bulkiness 
of XML.  

Another, not so obvious issue, is that the http 
request/response pattern is blocking which means that each 
request must be confirmed by a response before a new 
request can be made. This makes it sensitive to latency. As 
an example, with a round-trip latency of 10 ms it is only 
possible to make 100 calls per second. HLA service calls 
may depend on each other so they cannot be performed in 
parallel. As an example, the result of calling Join 
Federation Execution and Send Interaction in parallel 
would be unpredictable. 

Mixing different programming languages between the 
federate and the LRC has been tested using the WSDL API. 
One use case is for supporting C# using the Web Services 
API. It worked well, but parsing call-backs was 
cumbersome, as previously described. 

3.2. Issues with moving to a protocol 

When an API is used, many syntactic errors, like providing 
the wrong number of parameters, are detected during 
development and compilation. In a protocol-based 

solution, these kinds of errors may occur at runtime and 
create a need for new types of error messages. To minimize 
problems like this, e.g. missing parameters, malformed 
messages, etc, it is popular to develop and reuse software 
stacks, which would be a good idea also for a federate 
protocol. For a protocol, debugging is considerably more 
difficult, since the data is exchanged over a network as a 
one piece of raw data.  

3.3. Lessons learned from testing in Live 
environments 

A prototypical federate protocol has been tested in an 
application with live entities. Several vehicles in a test 
range were connected using GPRS/3G mobile broadband. 
The traditional LRC topology and the “thin HLA” topology 
were both tested. The federation contained around one 
hundred vehicles using the RPR FOM [5]. The most 
interesting observation was when the 3G link suffered 
interrupts every now and then. The time to re-join the 
federation, for a federate that lost connection, was in the 
range of minutes for the traditional LRC approach, but only 
a few seconds when using the federate protocol. 

The challenge here is to maintain the integrity of the 
distributed state, since the Local RTI Components need to 
stay in constant touch with each other.  Whenever the 
connection between one LRC and other LRCs is lost, e.g. 
due to a temporary disruption, the LRC may need to resign 
and re-join the federation to ensure correct state. This puts 
a very heavy burden on the federation. 

Using the federate protocol, this problem can be solved by 
locating the LRC on a reliable network and then have the 
federate connect to the LRC over the less reliable network. 
Any disruptions on the less reliable network will not cause 
the LRC to drop out of the distributed state. 

4. Design Challenges 
Developing a binary protocol based on the experiences 
from the Web Services API is quite straightforward. There 
are however some challenges that need to be solved.  

4.1. Supporting different environments 

The technical approach chosen shall have support for a 
large number of technical environments. If a code 
generator for encoding/decoding is used, it shall support 
many relevant programming languages. If communications 
or encoding libraries are required at runtime, these shall be 
available in as many relevant environments as possible. If 
possible, the use of such libraries shall be optional . 

4.2. Optimized encoding 

The encoding/decoding and data exchange shall require as 
little CPU and memory as possible. The need for copying 
of data between buffers shall be minimized. 



	

4.3. Optimizing for high-latency environments 

A protocol should be able to handle high-latency 
environments. One important approach is to enable 
federates to send many updates and interactions, without 
necessarily waiting for the outcome of a previous call, i.e. 
“blocking calls”. This would create an asynchronous 
behaviour in the protocol, as shown in Figure 8.  

 
Figure 8: Asynchronous mode 

This can be seen as postponed exception checking. A 
federate may want to perform some operations, like Join 
Federation Execution, with a conservative approach 
(waiting for a response), but others, like updates, with 
postponed exception checking. 

4.4. Optimizing for fault tolerance 

The federate protocol should also be designed for 
maximum fault tolerance. It could build upon TCP in order 
to get automatic retransmission of lost packages. Faults 
either need to be handled or propagated. Faults that could 
be handled include recovery from a broken TCP 
connection. This could be achieved by introducing a 
session token and retransmission of unconfirmed packages 
(unless they use best effort transportation). 

5. Discussion 
5.1. Need for a standard 

While proprietary versions of a binary HLA federate 
protocol have been developed, a standardized protocol has 
several advantages. It would make it possible for federate 
developers to switch RTIs, and avoid vendor lock-in. It 
would make it more attractive to developers to use the 
protocol. It would also capture the expertise of more HLA 
experts during the design. It would increase the support for 
more technical environments without needing to rely on a 
particular RTI supplier to support each effort. 

5.2. Reuse the standard C++ and Java APIs 

Considering a client software stack that implements the 
HLA federate protocol, should this client software have the 
same API as the programming language bindings in the 
HLA standard. For previously unsupported languages, like 
C#, Perl or Python, there are no such APIs, so this is less 
of a concern. For C++ and Java, there are several 
advantages with keeping the same API. A federate can then 
easily switch between a standard LRC and the “Thin HLA” 
software stack. The drawback is that this may force the 
stack to use blocking calls, which would reduce the 
performance significantly, compared to the asynchronous 
approach, where the calls aren’t blocking. 

5.3. Asynchronous API 

An API that supports the asynchronous model could be 
very useful for federate developers. Such an API could be 
closely aligned with existing APIs or it could be very 
different. One approach would be to reuse the current API 
but to introduce a delayed exception callback that reports 
exceptions asynchronously. 

5.4. Relationship to WebLVC 

A SISO standard called WebLVC [7] is currently under 
development. The main focus is as follows: “WebLVC is a 
protocol for enabling web and mobile applications 
(typically JavaScript applications running in a web 
browser) to play in traditional M&S federations (which 
may be using Distributed Interactive Simulation (DIS), 
High Level Architecture (HLA), Test and Training 
Enabling Architecture (TENA), or related protocols and 
architectures)” [8]. A typical WebLVC protocol message 
presents the data of an object instance, such as a military 
platform or an interaction, such as a firing event, in 
Javascript Object Notation (JSON) [8] notation. 

The authors would like to argue that the purpose and scope 
of WebLVC and the proposed federate protocol are very 
different. The WebLVC standard is best suited for 
providing data for a particular domain, like defense, to a 
web browser. The proposed federate protocol, on the other 
hand, provides the entire set of HLA services to many 
different environments for any domain, but may not 
provide the convenience of JSON for Javascripts 
applications in a web browser. 

6. Conclusion and Road Ahead 
A standardized HLA federate protocol offers several new 
opportunities as well as solutions to several issues that 
exists with HLA today. The most important ones are better 
support for Cloud deployment, Live applications and 
additional programming languages. 



	

As HLA is currently under revision, a formal comment 
proposing a federate protocol has been submitted. This 
comment includes forming a Tiger Team to capture the 
input from interested users, vendors and academia. 
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Appendix A: Sample HLA Federate Protocol Excerpt 
 
To illustrate what a federate protocol could look like, the following example is provided. It is based on early 
prototyping. 
 
Three sample packet layouts are provided: 
 

1. A Create Federation Execution service invocation packet, with the name “Test1” and using only one FOM 
module called “a1.xml”. 

2. A return packet for a successful invocation 
3. A return packet with an exception “Federation Execution Already Exists” 

 
The header contains four fields: 
 

1. The length of the package 
2. The message code. Codes 0-99 are used for session setup, teardown and similar purposes. Codes 100 and up 

are used for HLA service invocations. 
3. The session ID is used to identify the session, for example when several federates are serviced by the same 

server. 
4. The call ID is used to match call and return packets. 
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