
Towards RPR FOM 3: Revisiting the Datatypes

Björn Möller
Pitch Technologies
Repslagaregatan 25

58222 Linköping, Sweden
+46 13 4705503

bjorn.moller@pitch.se

Aaron Dubois
VT MÄK

150 Cambridge Park Drive
Camrbidge, MA, USA

+1 857-209-3451
adubois@mak.com

Patrice Le Leydour
Thales Training & Simulation

1, rue du Général de Gaulle – Osny
95523 Cergy-Pontoise, France

0033-1-34228252
patrice.leleydour@thalesgroup.com

Graham Shanks
BAE Systems

North Way, Hillend Industrial Park
Dunfermline, Fife, KY11 9HQ, United Kingdom

+44 1383 826450
graham.shanks@baesystems.com

René Verhage
CAE

Steinfurt 11
52222 Stolberg, Germany

+49 2402 106599
rene.verhage@cae.com

Fredrik Antelius
Pitch Technologies
Repslagaregatan 25

58222 Linköping, Sweden
+46 13 4705503

fredrik.antelius@pitch.se

Keywords: RPR FOM, HLA, Datatypes

ABSTRACT: Version 2 of the Real-time Platform Reference FOM (RPR FOM) has recently been finalized. It is the
most widely used FOM for defense simulations. The original purpose of the RPR FOM was to facilitate interoperability
between the DIS protocol and HLA federations. Today it is often also used as a common basis for further adaptation
and extensions in US and NATO federations.

One of the main goals of the final phase of the RPR FOM 2 development was to maintain buffer compatibility with the
widely used draft 17 of the RPR FOM 2. This in turn carries a lot of heritage from both the DIS protocol and the HLA
version 1.3, including many convoluted data buffer layouts. Today these may not be seen as striking the best balance
between low bandwidth utilization, simple encoding and decoding, flexibility and extensibility.

Now the time may have come to revisit the RPR FOM data representations for RPR FOM version 3. In addition to the
reviewing the record data structures, a goal could be to remove the RPR FOM specific datatype encodings such as the
length less array representations. Furthermore, an attempt to generate the Enumerations module from the SISO-REF-
010 XML source showed that some enumerations may need to be reconsidered or moved to other modules. The RPR
FOM 2 work has also revealed that some new datatypes may need to be added to the HLA standard, in particular to
represent unsigned integers that are used in DIS.

This paper provides an analysis and recommendation for the RPR FOM 3 development and to some extent for the next
version of HLA.

1. Introduction (All)
The Real-time Platform Reference FOM (RPR FOM)
version 2.0 has been completed. During the final phase of
this development (2012-2015), two decisions were agreed
upon within the Drafting Group:

1) To keep the scope of the widely used draft 17 of the
RPR FOM. No new classes, attributes, interactions or
parameters were to be added, unless there is an
obvious error.

2) Any information exchanged in attributes and
parameters shall be backwards buffer-compatible
with draft 17. This will eliminate the need to update
federates and federations already supporting draft 17,
facilitating and speeding up acceptance in the defense
simulation community.

The second decision unfortunately resulted in keeping
datatypes that may not be considered optimal today. Some
contributing factors are:

1) Programming languages. In the days of SIMNET, the
predecessor of DIS, languages like C and assembler
were commonly used. Today high-level languages
like C++ and Java are more common languages for
simulation development. Data structures that are
considered optimal in today’s programming
languages may be different from what was
considered optimal in the early days of distributed
simulation.

2) The HLA Datatypes of IEEE Std 1516™-2000 and
onwards. The data representations developed up to
RPR FOM draft 17 are not always natural or optimal
for a FOM specified using an HLA 1516 OMT.

3) Evolution in hardware. CPUs of today move data in
groups of four or eight bytes. Available network
bandwidth has increased dramatically.

4) Cost of manpower and required time to market for
simulation software. CPU power and bandwidth
today is often abundant but less and less time and
money is available for development. Data
representation thus needs to be simple and easy to
understand.

The purpose of this paper is to list and discuss a number
of issues that have surfaced during the RPR FOM 2
completion. Pros and cons are described. In some cases
no final resolution is proposed. Instead, this information is
intended as input to the RPR FOM 3 effort.

1.1. Purpose of original RPR

The IEEE Std 1278.1™, known as the DIS standard,
supports technical and semantic interoperability between

compliant applications. It defines a set of PDUs with a
predefined data model and binary representation. A
standard DIS PDU assembled by one application can be
understood by any other.

HLA introduced the capability for simulation developers
to define their own data model. The data model that
federates agree to share during an exercise is defined by a
Federation Object Model (FOM). This allowed HLA
federation developers a greater amount of flexibility to
refine their object model as the requirements of their
simulation changed or expanded, but they lost the a priori
interoperability inherent in DIS.

The Guidance, Rationale, and Interoperability Modalities
(GRIM) document that accompanies the RPR FOM
outlines three primary goals for the standard.

The first goal was to support the transition of existing DIS
systems to HLA. This was accomplished by modeling the
RPR FOM on the existing data content of the DIS PDUs.
As a result, converting existing software from DIS to
HLA was considerably easier, as was mapping between
the standards using a gateway application.

The second goal was to enhance a-priori interoperability
among RPR FOM users. As a standard reference FOM,
the RPR FOM was designed to provide a common base
object model that would be immediately interoperable
with any other RPR compliant applications, similar to the
interoperability guaranteed by DIS. This common base
could then be built upon to add new capabilities to
support the individual requirements of each federation.

The final goal was to provide a pre-existing FOM that
could be adopted by newly developed federates with
similar requirements, eliminating the need for each new
exercise to perform the task of defining a new FOM.

1.2. Mapping of DIS

The RPR FOM was designed to provide an intelligent
mapping from DIS into HLA. Rather than produce an
object model that blindly mapped DIS Protocol Data
Units (PDUs) into FOM objects and interactions, the RPR
FOM tried to exploit the benefits that HLA brought to
distributed simulations. Some PDUs were broken up into
multiple FOM objects whilst others were organized into
object hierarchies. In general fields within the DIS PDUs
mapped directly to object attributes and interaction
parameters. One of the decisions taken was to try to
preserve bit compatibility for datatypes, especially for
structures and arrays. This meant that for most datatypes
the encoding for DIS fields and RPR FOM
attributes/parameters were identical. This eased the
implementation of federates that were compatible with
both DIS and RPR FOM, or were transitioning from DIS

to RPR FOM, as well as making the implementation of
gateways between the DIS and RPR FOM protocols
easier.

1.3. HLA 1.3 heritage

Development of RPR FOM 2 began in 1999, before IEEE
Std 1516™-2000 was completed. As a result, initial
versions of the RPR FOM 2 (until the ballot of draft 17)
focused only on HLA 1.3. A number of IEEE Std 1516™-
2000 and IEEE Std 1516™-2010 versions of the FOM
were created before draft 19. However, they were
generated from and in compliance with the official draft
version in the 1.3 format. Before draft 19, none of the
FOMs in the newer formats were included in the official
distributions of the RPR FOM 2 drafts.

In several ways the HLA 1.3 OMT specification is not as
unambiguous or complete as the later HLA standards in
regards to how datatypes should be encoded. It does not
specify whether numeric datatypes should be encoded in
big or little endian format, it does not specify how arrays
should be encoded, and it does not specify how proper
byte alignment should be achieved. In addition, it chooses
a different standard representation for strings than that
chosen in the later IEEE Std 1516 standards. These
discrepancies in FOM formats between HLA 1.3 and the
HLA 1516 standards have directly led to RPR FOM
datatypes and encodings that are considered non-standard
according to the IEEE Std 1516™-2000 and IEEE Std
1516™-2010 OMT specifications. While sometimes
cumbersome, these discrepancies have been maintained
rather than break interoperability with previous drafts of
RPR FOM 2.0 that have already been widely accepted
and used by the distributed simulation community.

2. Datatype Issues
This section describes a number of topics related to
datatypes. We have chosen to group them according to the
technical character of the issue. This enables us to analyze
the issues and their pros and cons in a consistent way.
Nevertheless, decisions to change or retain a current
specification for one topic may impact discussions on
other topics.

2.1 Use of standard HLA encodings

The HLA OMT Specification includes a number of
predefined encodings for constructed datatypes, but it
allows object model developers the ability to define
alternative encoding schemes as well. RPR FOM 2 uses
several of its own encodings that pre-dates the HLA
standard encodings, which were first defined in IEEE Std
1516™-2000. In some cases there may be a benefit to

defining a new encoding type, but doing so may run the
risk of adding unnecessary complexity to the FOM.

Array Encoding

The HLA OMT Specification defines an array encoding
called HLAvariableArray to support arrays that may vary
in length at run time. This encoding consists of a 32 bit
integer indicating the number of elements in the array
followed by each element in sequence.

The RPR FOM instead sometimes uses an alternative
encoding called RPRlengthlessArray. A
RPRlengthlessArray may also be of variable length;
however the length of the array is not specified in the
encoding. Instead, each element is simply encoded in
sequence. It is left to the decoding federate to determine
how many elements are in the array.

When array elements are of a fixed size datatype,
determining the number of elements in a
RPRlengthlessArray is simply a matter of dividing the
total size of the data by the size of a single element. In
such cases, decoding a RPRlengthlessArray is as simple
as decoding a HLAvariableArray. It also has the small
benefit of eliminating the unnecessary 4 bytes of data
required to encode the array length.

For a RPRlengthlessArray containing elements of variable
size, however, the length of the array cannot be pre-
determined. In the best case, the size of each element can
be determined during the decoding process. For example,
this would be possible if each element in the array were a
null terminated string. Each time a null terminating
character was encountered, a new element could be
decoded from the array. By fully traversing the data in the
array, the number of elements could be determined. In
other cases the size of each element may be more difficult
to determine.

Another major drawback with RPRlengthlessArray is that
it is very difficult to use within another datatype, for
example as a field in a FixedRecord or as an element in
another array. In such cases it is not trivial, and may be
impossible, to determine when the RPRlengthlessArray
ends and when the next data element begins.

As a result, it is recommended that RPR FOM 3 adopt the
standard HLAvariableArray encoding scheme. This will
provide a single, consistent encoding that will work in all
cases. While it will introduce an additional 4 bytes per
array, on modern systems this is a fairly minimal increase
in size. In a few cases some other field implicitly provides
information about the length of the array. In such cases it
is recommended that the length specifying field be
combined with the array in a standard HLAvariableArray.
Depending on the size of the length specifying field there

may not be any overall increase in the number of bytes
transmitted.

String Encoding

There are two predefined array datatypes specified in the
HLA OMT Specification for encoding strings:
HLAASCIIstring and HLAunicodeString. Both use the
HLAvariableArray encoding. The RPR FOM defines a
new datatype called NullTerminatedASCIIString that uses
an alternative encoding called RPRnullTerminatedArray.
Like the RPRlengthlessArray encoding,
RPRnullTerminatedArray omits the 32 bit integer
specifying the length of the array. However, unlike the
RPRlengthlessArray it does provide a means of reliably
determining the length of the array by requiring that the
last element of the array be a null terminating character.

This is a case where the programming language a
developer is using may dictate which encoding is
preferable. In some languages, such as Java, strings are
not null terminated. In order to construct a string from a
null terminated array of characters, a Java application
must traverse the array and count the number of
characters prior to the null terminator in order to
determine the size of the decoded string. In other
languages, such as C++, strings are typically null
terminated, and the language has built in support for
easily constructing strings based on a null terminated
array of characters. However, C++ does also include a
simple way to construct a string given a predetermined
size as well.

In this case, neither encoding is clearly better than the
other. The additional 3 bytes required to encode a
HLAASCIIstring seems negligible on modern systems.
The recommendation is to use HLAASCIIstring in RPR
FOM 3, simply as a means of reducing the complexity of
the FOM by using a pre-existing and well understood
encoding rather than defining an alternative without a
clear advantage.

Variant Record Encoding

The HLA OMT Specification defines a single encoding
for variant records called HLAvariantRecord. This
encoding consists of the discriminant followed by the
appropriate alternative that is associated with that
discriminant.

The RPR FOM introduces an encoding called
RPRextendedVariantRecord. This encoding adds an
additional value after the discriminant that indicates the
size of the variant portion of the record. The intent is to
allow an application that may not support all of the
alternatives to easily skip the rest of the variant record in
cases where the variant record is part of a larger datatype.

This can save development work when only a subset of
the alternatives is supported by a given application.

In order to eliminate an unnecessary encoding, the
RPRextendedVariantRecord could be removed and the
standard HLAvariantRecord encoding could be used
instead. Only one datatype in the standard RPR FOM,
EnvironmentRecVariantStruct, currently uses the
encoding, and it is unknown how many applications take
advantage of the additional size field.

Another option would be to create a new fixed record
datatype composed of a size field followed by a variant
record encoded by the standard HLAvariantRecord
encoding. This would eliminate the need for an additional
encoding, but it would require the definition of an
additional datatype for each use of the current
RPRextendedVariantRecord encoding. While the standard
RPR FOM only uses this encoding once, FOMs based on
the RPR FOM may use this encoding in their own
datatypes. As a result, it is unclear if this would truly
reduce the overall complexity of the FOM.

In the short term it may be sensible to eliminate the
encoding in RPR FOM 3 and use HLAvariantRecord
instead. A better long term solution would be to include
the RPRextendedVariantRecord as a standard encoding in
a future version of the HLA standard. This has the
advantage that it is better suited to the proposal to enable
variant records (as well as enumerations) to be extended
in other FOM modules since federates which do not load
the module containing the extension will at least now the
size of the variant part and can reliably decode datatypes
containing such a variant record.

2.2 Missing HLA datatypes

RPR FOM 2 uses unsigned integers, for example for
enumerations. In some cases all bits are necessary to
express a particular enumerated value. The HLA OMT
does not currently support unsigned integers. The addition
of unsigned integers to the HLA standard is the preferred
solution. Another option would be to not use unsigned
integers in the RPR FOM. This would create some issues
in the mapping to DIS.

2.3 Enumerated date type sizes

Boolean Encoding

The IEEE Std 1516™-2000 and IEEE Std 1516™-2010
OMT specifications define an enumerated datatype,
HLAboolean, to represent a Boolean value. The data
representation used by this datatype is HLAinteger32BE.
The RPR FOM has always encoded Boolean values as a
single byte. In order to remain compatible with older
drafts of the FOM, RPR FOM 2 created a new
enumerated datatype for Booleans, RPRboolean, that is

represented by an HLAoctet. The primary benefit of using
RPRboolean is that it saves three bytes per usage.
However, this savings seems negligible on modern
systems, so it is recommended that RPR FOM 3 use the
standard HLAboolean instead in order to eliminate the
unnecessary duplication of datatypes.

Enumerated Datatype Encoding

RPR FOM 2 chooses the data representation for
enumerated datatypes based on either the size reserved in
DIS for possible enumeration values, or, for non-SISO-
REF-010 enumerations, the smallest size integer required
to encode all possible enumerator values. The latter helps
to keep the size of the encoded data to a minimum.
However, it also means that developers using the RPR
FOM must consult the FOM for each enumerated
datatype to ensure they are encoding and decoding the
correct size integer. It also means that a RPR based FOM
is more limited in the number of custom enumerator
values they can add to an enumeration. By standardizing
on a larger size integer, RPR FOM 3 would make
developing RPR applications slightly less error prone and
would allow FOM developers greater flexibility to add
new enumerator values to existing datatypes.
Nevertheless, to continue to support interoperability, it
remains important to ensure compatibility with SISO-
REF-010.

2.4 Datatypes related to SISO-REF-010

Since the RPR FOM is based on the DIS standard, the
enumerations as defined in Reference document SISO-
REF-010 play an important role in establishing simulation
interoperability. To highlight this dependency, and to
enable the RPR FOM users working with HLA 1516-
2010 to easily use an updated version of SISO-REF-010
or their own custom enumerations, these datatypes have
been defined in a separate module.

However, as of today the Enumerations module does not
fully reflect SISO-REF-010. Some of the enumerations in
SISO-REF-010 are not used in RPR FOM 2. Instead a
corresponding enumeration is defined directly in the RPR
FOM. In some cases the semantics is the same in the RPR
FOM and SISO-REF-010 but the actual enumeration
differs. In some cases SISO-REF-010 bit fields have been
split into several attributes, making updates hard to map.

Spread spectrum type enumeration

The easiest to solve is the one enumeration that moved
from the SISO-REF-010 back into the DIS standard itself.
IEEE Std 1278.1™-1995 refers to EBV-DOC section 9
for the information captured in the RPR FOM in
SpreadSpectrumEnum16. As in IEEE Std 1278.1™-2012
the details on the Modulation Parameter Record are

captured in Annex C. This enumeration should be moved
to the Communication module in the RPR FOM.

Minefield sensor type & Camouflage type
enumerations

More problematic are the CamouflageEnum32 and
MinefieldSensorTypeEnum32 enumerations. These
appear to be a combination of two or more individual
enumerations in SISO-REF-010 ([UID 378, 384] and
[UID 194-201] respectively). Although there is a clear
relationship between these individual enumerations, and
with the current enumerators it is indeed possible to
merge them, it makes it difficult to align the
Enumerations module with SISO-REF-010. It is the same
kind of complex mapping that needs to be implemented in
DIS/RPR FOM gateways. From this perspective it would
be beneficial to create datatypes that match their
definition in DIS closer and modify the classes that use
them accordingly.

Bitfield enumerations

Another example of the consequences of the differences
in datatypes between DIS and RPR FOM are the bitfield
enumerations defined in SISO-REF-010. Many of these
are not defined as distinct datatypes in the Enumerations
module, but instead have been translated into individual
attributes in the classes. In favor of interoperability it is
indeed unlikely that existing bitfields, e.g. the various
appearance definitions, will be modified. But in several
bitfields there is space left for additional information to be
exchanged. And this extensibility in DIS has already been
used, as can be seen from e.g. the newer capabilities
defined for the various platforms. As a consequence, there
may be implementations compliant with the DIS 1998
standard, but due to these using the latest SISO-REF-010,
their expressiveness cannot be fully mapped onto an HLA
network using the RPR FOM 2.0. To revolve this in the
next version of the RPR FOM, the bitfield structures from
SISO-REF-010 could be translated into individual record
datatypes and each bitfield row into a distinct
enumeration. Another alternative, at least for the entity
appearance, is discussed in section 2.5. This however
requires a solution for the next topic.

Entity type enumerations

The largest part of SISO-REF-010 may be much harder to
capture in the RPR FOM object model: the entity type
definitions. The entity type definitions are not included
the RPR FOM version 2. It would be preferable if they
could be included as enumerated types as they contain
useful information to the user. Many of the elements of
the entity type structure are restricted in their values based
on the contents of other elements. However the complex
dependencies between the elements of the entity type

made it too difficult to easily represent in the HLA OMT
format. Given that the move to an XML based format for
SISO-REF-010 has given new insights in how to define
these dependencies it may be that it is time to revisit this.

One could argue that the entity type enumerated values
should remain separate from the object model, just as they
are not defined in the DIS standard but listed in a
reference document. Following this argument it could also
be argued the all SISO-REF-010 based datatypes be
removed from the RPR FOM, and, for example, opaque
data structures used instead. Given the argument in
paragraph 2.5 of this paper to do exactly the opposite, the
authors call upon the readers to come up with ideas and
discuss how to capture in HLA datatypes the information
of the entity types commonly agreed upon.

The following are some thoughts to trigger the discussion.
An entity type definition could be stored as one large
integer value, effectively a union of the entity type record
with a 64-bit integer. However, it would then not be
possible to determine (easily) e.g. the kind or the country
from the enumerator value. So maintaining the structure
layout of the entity type record would be preferable. But
defining an enumeration for each of these fields does not
solve the issue; still it would then be possible to create an
entity type that is valid according to the FOM, but not
defined in SISO-REF-010. What seems to be needed is a
capability to define an enumeration using a record as the
representation datatype. Or are there other options that do
not require the HLA standard to be updated?

2.5 Opaque data

The RPR FOM contains a number of opaque datatypes
whose syntactic content is not contained in the RPR
FOM. Instead the user has to consult other documentation
to determine the structure of the opaque datatype. This
goes against the principles of HLA where the FOM
contains the format and syntax of the HLA object models.
Automatic tools, such as data monitors, data loggers and
code generators cannot properly process these opaque
datatypes.

VariableDatumStruct

The VariableDatumStruct is defined in the RPR FOM as a
HLA fixed record with three fields: the DatumID, the
DataumLength and the DatumValue. The DatumValue
field in the VariableDatumStruct is defined as an array of
64-bit unsigned integers. In reality the DatumValue does
not always consist of 64-bit unsigned integers, for
instance the DatumValue may well be an Entity
Identitifer. The datatype of the DatumValue depends on
the value contained in the DatumID field. The
dependency on the DatumID is explicitly defined in the
DIS Standard, referring to SISO-REF-010 for the

definitions of the possible types, but is not explicitly
included in the RPR FOM.

Given the dependency it is clear that the
VariableDatumStruct should actually be encoded as a
variant record. The preferred encoding would be the
RPRextendedVariantRecord since it includes the length of
the DatumValue. This allows for additional DatumID
types to be defined in the FOM, e.g. from aligning with a
newer SISO-REF-010, without requiring federates to be
recompiled if they don’t support it anyway. As argued in
section 2.1, the VariableDatumStruct could be encoded
with a combination of the standard HLAvariantRecord
embedded in a fixed record including a field for the
datatype size. There are, however, probably more
simulations using the VariableDatumStruct than are using
the EnvironmentRecVariantStruct and this needs to be
taken into account when deciding whether to keep the
RPRextendedVariantRecord encoding.

One of the issues with populating the variant record is that
the datatypes of many of the DatumID values identified in
SISO-REF-010 [UID 66] are unknown. There are over
750 distinct DatumID values identified in the latest
version of SISO-REF-010 and probably for no more than
10% their datatypes can be determined from the
description. As the DIS Product Support Group (PSG)
and the Enumeration Working Group (EWG) are in the
process of moving the datum record specification from
SISO-REF-010 into the DIS standard, collaboration is
required with the two groups to have the datatype for each
of the DatumIDs explicitly defined, accomplishing
unambiguous interoperability for both RPR FOM and DIS
users. However, this should not stop turning the
VariableDatumStruct into a variant record with the
definition of a suitable default.

FixedDatumStruct

The FixedDatumStruct is defined in the RPR FOM as a
HLA fixed record with two fields: the
FixedDatumIdentifier and the FixedDatumValue. The
FixedDatumValue field in the FixedDatumStruct is
defined as a 32-bit unsigned integer. In reality the
FixedDatumValue does not always consist of a 32-bit
unsigned integer, instead the field can convey 8-bit, 16-bit
or 32-bit data values including 32-bit floating point
values. The datatype of the FixedDatumValue depends on
the value contained in the FixedDatumIdentifier field. The
dependency on the FixedDatumIdentifier is explicitly
defined in the DIS Standard, referring to the same
enumeration in SISO-REF-010 for the definitions of the
possible types as for the Variable Datum Record, but is
not explicitly included in the RPR FOM.

Hence the FixedDatumStruct should also be encoded as a
variant record. In this case the HLAvariantRecord
encoding would be suitable as the data length is at
maximum 32 bits whereas the HLA byte alignment rules
result in a minimum of 32 bits for the data in the
alternative.

Since the discriminant of both the VariableDatumStruct
and the FixedDatumStruct are the same (i.e. both
DatumIdentifierEnum32) it is worth considering
combining both the fixed and variable datum structures in
a single datum structure. Thus far in the RPR FOM the
separation into fixed and variable datum records followed
the structures as defined in DIS, requiring less data to be
transmitted by omission of the data length for datum
values that fit into 32 bits. With increased network
bandwidth this optimization may be regarded less
important than reducing the object model complexity by
defining only one datatype for exchanging data that is
specified by the Variable Record Type [UID 66]. This
perspective requires also looking into the next datatype,
the RecordSetStruct.

RecordStruct and RecordSetStruct

The data field of the RecordStruct datatype
(imaginatively, if not particularly obviously, named
NumberOfBytes-A-RecordData) is defined as an array of
octets. In reality this is yet another variable datum
structure. At first impression, the proposed combined
datum structure (replacing VariableDatumStruct and
FixedDatumStruct) cannot be shared since the Record Set
contains an array of datum structures rather than a single
datum structure. A variant record with the same
discriminant but with fields consisting of arrays of
datatypes would match the current design. If there was a
desire to keep the length of the data structure then this
could be included in the RecordSetStruct (since all
records in a Record Set are the same). However, as argued
for the merger of the VariableDatumStruct and the
FixedDatumStruct, inclusion of extra data in the
transmission, in this case the repetition of the
RecordSetIdentifier, would prevent repetition of similar
data structures in the object model. Due to also another
field being present in the RecordSetStruct, the
RecordSetSerialNumber, this potential merger needs to be
investigated in more detail, including verification that
with new datatype structures data can be translated back
and forth in DIS / RPR FOM gateways for all applicable
PDUs / events.

AttributeValuePairStruct

The value field (NumberOfBytes-A-Value) in the
AttributeValuePairStruct is defined as an array of octets.
Although theoretically it is possible to turn this into a

variant record it is unlikely that this would be possible in
practice. The issue is that the value field can represent any
attribute value in the FOM making the definition of the
data structure tedious and hard to maintain. Even worse,
the discriminant is an attribute handle which isn’t a fixed
value, rather it is allocated by the RTI (although it is
recommended in section 2.6 that this be turned into a
string representing the FOM name). It is unlikely that this
can be made into a more descriptive structure. However
the RPR FOM uses this structure in the
AttributeChangeRequest interaction (and the associated
AttributeChangeResult reply) – this functionality could be
useful to other federations and it may well be worthwhile
adding this to a future HLA revision.

Silent Entity Appearance

The EntityAppearance field in the SilentEntityStruct is
defined as an array of 32-bit unsigned integers. In reality
the appearance is not a 32-bit integer, instead it is a
bitfield, whose contents depend on the EntityType
(sometimes in quite complex ways). The DIS appearance
field has been split out into separate attributes in the RPR
FOM (although the RPR FOM has not kept pace with
additions introduced in SISO-REF-010). As proposed in
section 2.4, different fixed records should be created for
the possible appearance structures, matching their
definition in SISO-REF-010. Then ideally the EntityType
and EntityAppearance fields in the SilentEntityStruct
should be combined in to a single variant record.
However, currently HLA has no easy way of using a fixed
record structure like the EntityTypeStruct as discriminant.
An alternative would be to introduce a new enumeration
to define the different possible appearance structures and
use this as a discriminent.

DIS Version 7 Structures

On the fairly safe assumption that RPR 3.0 will contain
structures representing functionality introduced in IEEE
1278.1™-2012 it will be important that no new opaque
datatypes are introduced in the process. The most obvious
candidate datatype that could be defined as an opaque
datatype is the DIS Standard Variable Specification
record. Inspection of this type shows that the proposed
datum structure could be used for this field as well, since
it shares the same enumeration as the discriminant (i.e.
DatumIdentifierEnum32).

2.6 Representation of RTI data

In a few cases a reference to an HLA attribute is given,
for example in the AttributeValuePairStruct used by the
interaction AttributeChangeRequest. This is specified
using four bytes representing the federation-wide encoded
attribute handle. While this is the commonly used
encoding, HLA allows for any size of attribute handles. A

better option would be to use the HLAhandle datatype
that is already part of the standard MIM in IEEE 1516™-
2010. This datatype is specifically designed for encoded
handle values. The downside to this approach is that this
value is only valid during a federation execution and
cannot be easily decoded, for example, from a data
recording. Another option is to use the FOM name of the
attribute.

2.7 Complexity vs. Understandability

There are quite a few complex datatypes within the RPR
FOM; the actual data represented by a basic, simple, or
enumerated datatype may be found as deep as six levels
down. For example, the category of an attached part is a
field of the EntityTypeStruct, this store type is part of the
AttachedPartsStruct, which is an alternative of the
ParameterValueVariantStruct, in turn contained in the
ArticulatedParameterStruct, and one or more elements of
the latter structure are transmitted in an
ArticulatedParameterStructLengthlessArray. This is an
example of the structures of the datatypes closely
matching the DIS standard, and likewise enabling a large
flexibility in exchanging simulation data.

Spatial data structures

That other solutions can be found to representing the
same data is obvious, and can also been seen in the
changes from RPR FOM 1.0 to RPR FOM 2.0 with
respect to representing entity spatial information. The
seven individual attributes in RPR FOM 1.0, some of
which are not needed for certain types of dead reckoning,
have been replaced in RPR FOM 2.0 by one attribute
using a variant record datatype. In this
SpatialVariantStruct, the type of dead reckoning
algorithm determines which of the nine alternatives
applies, which use one of the five different fixed records
defined for holding spatial data.

Is this too complex? Given that all five fixed records
contain the WorldLocation, IsFrozen, and Orientation
fields, the following approach could be used:

A fixed record is used that contains
• the fields WorldLocation (FixedRecord),

IsFrozen (Boolean) and Orientation
(FixedRecord);

• a variant record with the dead reckoning
algorithm and optional velocity and acceleration
information.

This may help first time users in starting to understand the
RPR object model, as it makes explicit that basically
‘spatial’ is all about the location and orientation. It would

also enable applications more convenient access to this
basic spatial information.

On the other hand, such a structure bears the risk of
initially leading to an incorrect understanding of one of
the basic architecture concepts of DIS, and therefore also
of the RPR FOM: the reduction of communications
processing through dead reckoning. For the fields
WorldLocation and Orientation are not supposed to be
processed without inspecting the dead reckoning
algorithm. With the exception of the static algorithm, the
location and orientation are only valid at transmission
time. Depending on the algorithm, the velocity and
acceleration values must also be used to dead-reckon the
location and orientation for the times between the
transmissions of the spatial information.

With the currently defined dead reckoning algorithms the
alternative structure does provide an optimization in terms
of removing the repetition of three fields; in object-
orientation terminology, through generalization into a
parent structure. However, due to the characteristics of
what is represented, it is still required to also process the
variant record; in object orientation terminology, the
parent structure is abstract, it cannot be used without its
children. Unfortunately these objected orientation
concepts can currently not be captured in an HLA object
model. Hence the relationship between the spatial fields
and the chosen dead reckoning model can only be
captured in the semantics of or notes to the structures.

What is perceived as complex or assisting
understandability depends on perspective and personal
preference. The authors therefore call upon the readers to
contribute to the discussion and provide their arguments
and opinions as to whether the spatial structures should be
kept as they are, or are candidate for improvement in RPR
FOM 3.

One-field fixed records

There are a few fixed records in the RPR FOM which
seem to have an unnecessary complexity as they only
contain one field, or a second one only for padding:
BreachStruct, GridValueType0Struct, and
GridValueType2Struct; and the UniformGeomRecStruct
even contains only a padding field. The conversion tool
used to convert from HLA 1.3 to HLA 1516-2000 created
a lot of additional fixed records with only one field. They
were removed as part of the RPR FOM version 2
finalisation.

From an implementation perspective there is indeed no
need to hide the data another level deeper. However,
when considering the understandability of the RPR object
model and a consequent naming scheme, it is preferable
to keep these intermediate fixed records.	

For example the BreachStruct can be understood from
looking at its context. There are four kinds of linear
environment objects: BreachableLinearObject,
BreachObject, ExhaustSmokeObject, and
OtherLinearObject. Apart from the latter, which has no
attributes defined, these all have one array holding the
data. The datatypes used for the other arrays,
BreachableSegmentStruct and ExhaustSmokeStruct, do
contain multiple fields.

Another example is the UniformGeomRecStruct, used in
a variant record. The other alternatives in this variant
record have a corresponding fixed record, albeit with
multiple fields. If all explicit padding fields are removed
for the HLA 1516 versions of the RPR FOM 3 (see
section 2.8), and depending on the interpretation of the
definition of this record in SISO-REF-010, this fixed
record could even become empty. Since the HLA OMT
allows to include alternatives for a variant record without
defining name and datatype, it would then be advised to
remove the UniformGeomRecStruct datatype, but do list
the alternative UniformGeometryRecordType to prevent
users from wondering whether this environmental process
geometry record type has been forgotten in the RPR
FOM.

2.8 Handling different HLA OMT versions

The HLA 1.3 OMT specification contains no rules about
how proper byte alignment should be achieved in
complex datatypes. As a result, FOM developers would
explicitly define padding fields in their datatypes. The
RPR FOM has always included such explicit padding
fields where necessary.

In IEEE Std 1516™-2000, standard rules for handling
byte alignment were defined. It was no longer necessary
to explicitly define padding fields in your FOM, as the
appropriate padding was implicitly required by the rules
of the standard. This reduced clutter in FOM datatype
definitions. In RPR FOM 2, however, all explicit padding
fields have been maintained. This helped in generating the
HLA 1.3 format of the FOM from the IEEE Std 1516™-
2010 format, as it provided explicit instructions for the
conversion tool to insert padding fields where necessary.
In order to support this, two new datatypes were defined:
RPRpaddingTo32Array and RPRpaddingTo64Array.

In RPR FOM 3, it is recommended that these padding
fields be removed from the IEEE Std 1516™-2000 and
IEEE Std 1516™-2010 formats of the FOM since they are
redundant to rules defined by the standard. This will
declutter the FOM, making it easier to read. It is proposed
that any conversion tool used to generate the HLA 1.3
format of the FOM be updated to automatically insert
explicit padding fields as necessary by following the

alignment rules outlined in the IEEE Std 1516™-2000
and IEEE Std 1516™-2010 standards.

3. Impacts on Federates, Federations and
future RPR FOM Development

The proposed modifications do not affect the semantics of
the RPR FOM. However, any federate that uses these new
datatypes will not be data buffer compatible with older
federates. Since other parts of the RPR FOM are expected
to change for RPR FOM 3, this may not necessarily be a
major issue.

For new (and to some degree existing) developers of RPR
FOM, these changes will make it considerably easier and
less error-prone to develop federations, in particular with
respect to data encoding.

It will be easier to learn the RPR FOM for developers
with a basic understanding of HLA when the RPR FOM
is better aligned with HLA datatypes.

3.1 Impact on future RPR FOM development

It is expected that several new concepts will be added to
the RPR FOM in version three, for example directed
energy weapons and information operations. It is
beneficial to add any improved approach for representing
data before these additions are developed.

4. Conclusions
This paper proposes a number of improvements to the
RPR FOM datatypes for version 3. Some changes for
future HLA versions are also discussed.

This would be a good time to revise the datatypes, since
RPR FOM 2 development has been completed and RPR
FOM 3 development is expected to start shortly.

It is expected that these changes will make the RPR FOM
easier to use, extend and maintain.

It will also reduce risk for RPR FOM federation
developers by reducing the use of non-standard datatypes
and encodings.

References

[1] IEEE: "IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture
(HLA)", IEEE Std 1516-2010, IEEE Std 1516.1-
2010, and IEEE Std 1516.2-2010, www.ieee.org,
August 2010.

[2] SISO: “Real-time Platform Reference Federation
Object Model (RPR FOM) Version 2.0D17”,
www.sisostds.org, September/October 2003.

[3] IEEE: “IEEE standard for, Distributed Interactive
Simulation – Application Protocols”, IEEE Std
1278.1-1995 and IEEE Std 1278.1a-1998,
www.ieee.org, September 1995 and March 1998.

[4] SISO: “Reference for: Enumerations for
Simulation Interoperability”, SISO-REF-010-
2015, www.sisostds.org, 17 March 2015.

[5] Björn Möller et al.: “RPR FOM 2.0: A
Federation Object Model for Defense
Simulations”, 2014 Fall Simulation
Interoperability Workshop, (paper 14F-SIW-
039), Orlando, FL, 2014.

Author Biographies

BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
development of Pitch’s products. He has more than
twenty-five years of experience in high-tech R&D
companies, with an international profile in areas such
as modeling and simulation, artificial intelligence
and Web-based collaboration. Björn Möller holds a
M.Sc. in Computer Science and Technology after
studies at Linköping University, Sweden, and
Imperial College, London. He is currently serving as
the vice chairman of the SISO HLA Evolved Product
Support Group and the chairman of the SISO RPR
FOM Product Development Group.

FREDRIK ANTELIUS is a Senior Software
Architect at Pitch and is a major contributor to
several commercial HLA products, including Pitch
Developer Studio, Pitch Recorder, Pitch Commander
and Pitch Visual OMT. He holds an M.Sc. in
Computer Science and Technology from Linköping
University, Sweden.

AARON DUBOIS is a principal software engineer at
VT MÄK and is currently working on VR-Forces,
MÄK's Computer Generated Forces application.
Prior to that, he was the lead engineer for MÄK's
interoperability products, including the MÄK RTI,
VR-Link, VR-Exchange, and the MÄK Data Logger.

He has been an editor of the GRIM since joining the
latest RPR FOM drafting group in Fall SIW 2012.

PATRICE LE LEYDOUR is a system architect in
the field of M&S for support to bids and projects at
TTS (Thales Training & Simulation). His main
interests are simulation interoperability using HLA
(High Level Architecture), and C2-Simulation
interoperability. During Fall SIW 2012 he
volunteered as one of the FOM editors in the
Drafting Group.

GRAHAM SHANKS is a technical manager for
synthetic environments in BAE Systems. He has over
35 years’ experience of simulation and has been
involved in the development of DIS, HLA, RPR
FOM and other IEEE and SISO standards. He was
the FOM editor of the RPR FOM through until RPR
FOM 2.0 draft 17 and most recently served as the
editor for the updates to the IEEE 1278.1 and 1278.2
standards.

RENÉ VERHAGE is a software architect at CAE’s
office in Germany, with a focus on synthetic
environment and simulator networking. Since his
introduction to DIS and HLA in 1999, the topic
distributed simulation and interoperability returned
on his desk in the execution of many projects. Since
2011 he contributed to the finalization of the RPR
FOM 2.0, acting as one of the FOM editors in the
Drafting Group.

Appendix A: RPR FOM 2 Modular Structure
	

This appendix provides a graph of the RPR FOM 2 modules

Figure 1: RPR FOM 2.0

