

Building Time Managed Federations with Object Oriented HLA

Fredrik Antelius, Pitch Technologies, Sweden
Martin Johansson, Pitch Technologies, Sweden

Björn Möller, Pitch Technologies, Sweden

fredrik.antelius@pitch.se
martin.johansson@pitch.se

bjorn.moller@pitch.se

Keywords:
HLA, Time Management, OO-HLA

ABSTRACT: A popular approach to simplify the use of HLA is to use an object oriented HLA middleware with
an API that is tailored to a specific FOM and federation agreement. This is informally known as Object Oriented
HLA, or OO-HLA.

Time Management in HLA is a powerful set of services to achieve deterministic distributed simulations. The
Time Management services in HLA support different kind of simulations; everything from frame-based
simulations like the SISO Smackdown federation to analytical simulations run multiple times using the Monte
Carlo method and even optimistic, event-based simulations where data that is sent and used optimistically can
later be retracted and any calculations based on the data have to be redone.

This paper contains an introduction to HLA Time Management and Object Oriented HLA. It describes common
use case for HLA Time Management and Object Oriented HLA. It shows how the advanced features of Time
Management can be simplified and presented in a powerful way in an existing, commercial OO-HLA tool.

1. Introduction
This paper gives an introduction to the Time
Management services in HLA and it also gives an
introduction to Object Oriented HLA (OO-HLA).
This paper describes how support for the time
management services can be added to a commercial
OO-HLA tool, the best practices used and finally
some thoughts and insights gained during the
development.

1.1 About simulation and time

The US DoD M&S Dictionary defines a simulation
as “a method for implementing a model over time”
[1]. When several federates interoperate in a
federation, simulation time needs to be managed.
This is what the HLA Time Management services
do.

There are many reasons that you may want to use
the HLA Time Management services, they all have
the requirement for determinism and repeatability
in common.

The result of a deterministic and repeatable
simulation need to be based on the input parameters
and the actions of each system, and shall not be
affected by external factors, for example changes in

latency between systems or processing time of
messages. Messages are delivered to the systems in
a well-specified order that is guaranteed to be the
same in every simulation run.

The simulation run can be repeated and the results
after every run will the same.

The determinism and repeatability is relying on the
order of events, i.e. when messages are received.
The order has to be well defined. There has to be
some form of the “happened before” relationship
between events [1a]. For example the “fire event”
happened before the “detonation event”.

If we only have two systems, this can be solved by
using TCP/IP to send the “fire event” and
“detonation event”. The TCP/IP stream will
reassemble and order the received network
packages so that the messages are guaranteed to
arrive in the intended order. Similarly, in a Client-
Server architecture this is also not a problem since
all messages are ordered by the server. When
building distributed simulations, we often have
more than two systems that need to exchange
messages. We will show how Time Management in
HLA can be used to solve this problem.

1.2 Drawbacks of not using Time Management

The classical paper “HLA Time Management and
DIS” by Richard M. Fujimoto and Richard M.
Weatherly contains a simple example [2]. We have
three systems, A, B and C. System A send a “fire
event”, that system B reacts to by sending a
“destroyed event”. System C is an observer of the 2
events, and they may be received so that the
“destroyed event” is seen before the “fire event”.
That can clearly cause problem in the simulation.

This simple example shows what can happen when
we are not able to control the “happened before”
relationship between the “fire” and the “destroyed”
event. System C sees the “destroy event” before the
fire event that actually caused the event. The effect
is seen before the cause!

The problem is that we need to order events
between A, B and C together, pairwise between A-
B, A-C, and B-C is not enough.

For system C we need to order the “destroy event”
so that the fire event is processed first. See the
dotted line in the picture.

With HLA Time Management we can use the RTI
to perform this ordering and make sure that all
messages are seen and processed in the correct
order and we can have a well specified “happened
before” relationship between multiple events in
multiple systems.

Instead of relying on the real-time reception of
events, we assign logical time to events. The logical
time is just a value that the RTI and the simulators
can use to compare with each other to determine
which “happened before”.

Messages can be received in a random order and
then be delivered to the simulator in an order that is
well specified by the assigned logical times.

1.3 Applications

Frame-based simulations typically simulate a
continuous system, for example a platform based
training simulator. The data is exchanged at a fixed
frame rate, where some systems may use a multiple
of the frame rate, e.g. only exchanging data in every
5th frame. The simulation can run in real-time
when there are humans or hardware in the loop, but
may also run in non-real-time (as fast as possible or
time scaled) when possible. Simulators both send
and receive time-managed messages. The data in
the current frame is used to produce data for the
next frame.

An example of a frame-based simulation is the
SISO Smackdown event where data is exchanged at
1 Hz. NASA has provided two time managed
federates, one that simulates the positions of the

Sun, the Earth and the Moon [3]. This federate is
also responsible for pacing the logical time. The
other federate is a transfer vehicle that flies from
the Earth to the Moon.

Students from all around the world have then added
simulators for rovers and astronauts on the Moon,
space vehicles, observers, visualizers and
communications. This collaboration has required an
extensive documentation and specification, for
example in the Federation Agreement [4].

The frame-based approach to designing the
simulation can be seen in the diagram of the
Running state from the Federation Agreement, see
figure 2. One iteration in the diagram is one
frame.

Figure 1: Example from “HLA Time Managment and DIS”

Figure 2: Running State from the SISO Smackdown
federation agreement

An event-based federate does not perform the same
processing in every time step, instead it performs
the processing as a result of an internal or external
event.

An example is a judge federate that does a damage
calculation as a result of a fire event. When a fire
event is received, the damage is calculated and
update on the targeted instance. Something called
zero lookahead can be used so that the fire and the
updated damage will be received “simultaneously”
by the other federates.

A simulator may be a mix of frame and event-based
in different stages of the scenario. It may be frame-
based during launch and docking but event based
during flight to the moon. The frame length may
also be modified to be longer during the flight
phase.
Based on the data exchange, it may be preferable to
use frame based if you expect to receive data at
every frame, but if the data is received sporadically
and usually not in every frame, event based may be
preferred. The internal model used to implement the
simulator should also be considered.

An analytical simulation using time management is
typically based on the Monte Carlo method [5], in
which repeated random sampling is used to
compute the result. For the Monte Carlo method to
be applicable, the simulation run must be
deterministic; changes in the result must be caused
by the input, not by random behavior in simulators
or data exchange.

This type of simulations uses time management for
all data exchange and is usually not paced but
running as fast as possible. Save and restore is often
used to restart the simulation between the Monte
Carlo runs.

Frame overrun detection is also a common use case
for time management when building distributed
simulations. The data is exchanged with logical
time stamps but the messages are delivered in
receice order rather than logical time stamp order.
The federates still use the HLA Time Management
services to control the logical time and when a
message is received with an unexpected logical
time a frame overrun has been detected. This can
result in a warning and/or that the data can be
dropped.

1.4 Making it easier to build Time Managed
federations

When building more advanced distributed
simulations, an increasing number of simulators
need to use the HLA Time Management services.
The available guidance, documentation and
examples of time management usage are very

limited so there is a great need to make it easier to
build and use time managed federations.

The support for the HLA Time Management
services in Pitch Developer Studio and this paper is
part of an effort to make it fun and easy to build
time managed federations.

2. Time Management in HLA
2.1 The Happened-Before Relationship

For developers of multithreaded applications, the
happened-before relationship between events is a
constant source of problems:

“What happens if an element is removed from the
list while I’m iterating the same list?

 - I need to guarantee that I have iterated the
complete list before someone else may remove an
element”

This is achieved using locks, mutexes, comapare
and swap (CAS), lock-free data structures, signals
or whatever other tools the programming language
provides for concurrent programming. All these are
based on the notions of a happened-before
relationship between events.

For example the Java Language Specifications
defines a Memory Model where the Happens-
before order is described in great detail, that
operations that may be reorder (for example by the
CPU) and when a thread “sees” a write from
another thread [6]. C++ did define a Memory
Model in C++11, previous versions relied on the
processor architecture to define Happens-before (so
the same program may behave differently on
different processors) [7].

2.2 Happened-Before in Distributed Simulations

For distributed simulations where the Happened-
before relationship needs to be guaranteed between
different applications or simulators, HLA provides
the following support [8, 9, 10, 11, 12]:

• Synchronization points or Save and
Restore.

• Request/Response interactions or updates.

• The Time Management services.

If we look at some of the other architectures for
building distributed simulations, we note that DIS,
TENA and DDS have no native support to
guarantee causality [13, 14, 15]. To achieve
causality, you are required to use manual
Request/Response messages to guarantee any
Happened before relationships. The use of
unreliable communication in DIS and DDS makes
this extra error prone.

2.3 Time Managed operations

In addition to the HLA Time Management services
to manage and control the logical time, the
following operations are optionally time managed:

• Update instance with
updateAttributeValues and
reflectAttributeValues

• Exchange events with sendInteraction
and receiveInteraction

• Remove instances with
removeObjectInstance and
deleteObjectInstance

Some additional services are often requested to
have time managed support. They can easily be
handled in the federation agreement, for example:

• Ownership transfer: use a pattern like the
Transfer of Modeling Responsibility
(TMR) pattern where the administrative
exchange uses time managed interactions
and then the ownership is exchanged as
agreed [15a].

• Create instance: treat the first update as
the time managed operation when the
“instance was created”. This may use an
empty update of the
HLAprivilegeToDelete attribute if no
other attribute is applicable.

2.4 Other types of Time Handling

When discussing HLA Time Management, and
especially when comparing it to other mechanisms
to handle time, there are often some confusion. This
section describes other types of time handing that is
not related to HLA Time Management.

Time stamps

The RPR FOM uses timestamp sent in the User
Supplied Tag [16]. The sender assigns a time stamp
when the data was valid or generated, instead of
when the receiver received or processed the data.
This is useful for dead reckoning for example. Note
that synchronized clocks are not needed, the RPR
relative time stamps do only rely on the time
differences between updates and use that for dead

reckoning.

Real-time

Timing may also be implicit, all systems know that
all other system are connected to the same data bus
or wired to the same sync signal. All messages sent
or received are implicitly valid for the previous,
current or next frame.

2.5 Definitions

There are some terms that we need to define before
we continue.

Regulating: a federate that is time regulating has
the capability to send time managed messages.

Constrained: a federate that is time constrained has
the capability to receive time managed messages.

Federate Time: each federate has its own logical
time. The federate time is regulated and constrained
by other federates in the federation.

Lookahead: the lookahead defines how soon in the
future messages may be sent (only applicable if the
federate is time regulating). The smallest logical
time of messages to send is the federate’s current
time + lookahead.

Time Representation: the data type used to
represent the logical time.

HLA 1516-2010 Evolved contains two standardized
time representations, HLAinteger64BE and
HLAfloat64BE. They use a 64-bit integer or a 64-bit
float in your programming language, for example
an int64_t or long and a double.

You may choose not to use the standardized time
representations. It is possible to represent the
logical time as a string and 4 floating-point values.
It is not recommended as some tools may only
support the standardized time representations [17].

2.6 Advancing the Logical Time

When the federate increases or advances its logical
time, it moves between two states: the Granted
state and the Advancing state.

The federate starts in the Granted state. In this
state, messages for the next logical time may be
sent. When all messages for the next logical time

Figure 3: HLA Time Managment states

have been sent, the federate will send a request to
the RTI to advance its logical time. With this call
the federate enters the Advancing state and no more
messages for the next logical time may be sent.

When in the Advancing state, messages from other
federates are received. When the RTI can guarantee
that no more messages with the requested time will
be received, the advance is granted and the federate
is returned to the Granted state. The time spent in
the Advancing state is controlled by the RTI and is
based on the behavior of the other federates in the
federation.

3. Object Oriented HLA
Object Oriented HLA (OO-HLA) is a way to
represent the HLA API using the object oriented
programming paradigm, where the instances in the
HLA federation are actual objects in the
programming language. The programming
language object classes, for example HlaAircraft,
correspond to object classes in the FOM, for
example HLAobjectRoot.Aircraft. The main
advantage is that this makes OO-HLA very
intuitive and easy to use, but it assumes a particular
FOM.

OO-HLA can be developed in many different ways,
so there is no standard that defines how this must be
done. OO-HLA is a design pattern for the
middleware, commonly referred to as the HLA
Module, which adds HLA support to a simulator
[18, 19].

The HLA Module is generated, automatically or
manually, by selecting the attributes, object classes
and the interactions that should be used. Some
additional properties may also be added to specify
how the attributes and interactions are intended to
be used. The generated code has an API that has
been tailored to the FOM and the specific
requirements of a particular simulator, instead of
the very general HLA API.

3.1 Proxy Objects

The HLA Module contains two types of proxy
objects.

1. If another federate registers an HLA object
instance, then the HLA Module creates a
C++ or Java object that corresponds to that
instance. The attributes of that object are
populated as updates are received. To get
these values you use a type-safe “get”
operation.

2. Your federate can create your own “local”
object instances. The HLA module will
then register the object in the federation.
The attributes of that object can be updated

with type-safe “set value” operations.
These attribute values will automatically
be sent to other federates.

3.2 Example

An example of using an HLA Module generated
with the OO-HLA tool Pitch Developer Studio™.
// connect to the RTI
_hlaWorld.connect();

// create an aircraft with callsign AirforceOne
HlaAircraft aircraft = _hlaAircraftManager
 .createLocalHlaAircraft("AirforceOne");

for (int i = 1; i < 20; i++) {
 // create an updater and set the (dummy) position
 HlaAircraftUpdater updater = aircraft
 .getHlaAircraftUpdater();
 updater.setPosition(PositionRec.create(i, i*20, i*300));

 //send the position update
 updater.sendUpdate();

 // sleep for 1 second
 Thread.sleep(1000);
}

// delete the aircraft
_hlaAircraftManager.deleteLocalHlaAircraft(aircraft);

// disconnect from the RTI
_hlaWorld.disconnect();

This example will connect to the RTI and create
one aircraft. The position of the aircraft will be
updated 20 times, once per second, and then delete
the aircraft and disconnect from the RTI. In a later
sample we will see the modifications needed to use
time management.

3.3 Pitch Developer Studio

Using Pitch Developer Studio™ is like “getting an
HLA expert in a box”. It generates code that gives
you best-practice patterns for HLA integration. It
supports HLA functionality like create, join,
publish, subscribe, register, discover, update, reflect
as well as sending and receiving of interactions. It
supports functionality like request and provide of
attributes for efficient initialization and to support
late joining federates. It takes care of encoding and
decoding values for simple as well as complex data
types. It allows you to work with local and remote
objects using set and get on local objects. It allows
you to work with HLA interactions. And it handles
the handles.

Figure 4: Pitch Developer Studio™

Pitch Developer Studio™ is based on a number of
best-practice patterns both for HLA and for
programming in general. The following design
patterns are often used in the generated code [20]:

• Factory

• Listener (Observer/observable)

• Adapter

The current version of Pitch Developer Studio™
generates both C++ and Java code and supports
common Windows, Linux and Mac OS X versions.

4. Adding Time Management to OO-
HLA
This section describes how support for the HLA
Time Management services was added to the OO-
HLA tool Pitch Developer Studio™.

4.1 Principles

There were some principles that guided the design
of HLA Time Management support for Pitch
Developer Studio™, for example:

1. Easy to switch between using time
managing and not using it.

2. Easy to use for beginners, but support
more advanced use cases.

3. Support gradually increasing time
management usage.

4. Support the most common ways of
handling time.

5. Paced by another system or support for
internal pacing with custom time sources.

6. Support commonly used time
representations.

The HLA Module uses a fixed frame length by
default. The lookahead is the same as the frame
length. This works well for frame-based simulators.
Event-based simulators can set the frame length to
∞, and set the lookahead to 0. This makes the

generated HLA Module easy to use for both types
of simulators. Both the frame length, i.e. the step
size for time advancement, and the lookahead can
be modified at runtime if needed.

All “get” methods will return the value for the
current frame. The frame when the update was
received can also be returned.

All “set” methods and the sendUpdate() method
produce values for the next frame. An optional
parameter can be used to send an update in another
(future) frame.

The generated HLA Module keeps track of the
default logical time that is used if no other value is
assigned when sending an update or interaction.
This time is automatically updated by the HLA
Module. The HLA Module also keeps track of the
currently granted time and the time of the next
frame.

4.2 Advancing the Time

The logical time can be advanced using three
different methods with slightly different semantics.

• advanceToNextFrame(): advances the time
to the next frame. This method is used by
frame-based simulators.

• advanceToNextEvent(): advances to the
logical time of the next event. This may be
the same as the current time. This method
is used by event-based simulators. This is
the only method that fully supports zero
lookahead.

• advanceToLogicalTime(LogicalTime):
advances the time to the requested time.

All methods are blocking, so they will not return
until the request has been granted. The federate is in
the granted state before the call, and then in the
advancing state during the call. When the method
returns, the federate is back in the granted state, see
figure 5.

Figure 5: Advancing the logical time

4.3 Simple Example

The simple example that we looked at in section 3.2
can easily be modified to use time management.
// connect to the RTI
currentTime = _hlaWorld.connect();

// create an aircraft with callsign AirforceOne
HlaAircraft aircraft = _hlaAircraftManager
 .createLocalHlaAircraft("AirforceOne");

for (int i = 1; i < 20; i++) {
 // create an updater and set the (dummy) position
 HlaAircraftUpdater updater = aircraft
 .getHlaAircraftUpdater();
 updater.setPosition(PositionRec.create(i, i*20, i*300));

 //send the position update for the next frame
 updater.sendUpdate();

 // advance to next frame
 currentTime = _hlaWorld.advanceToNextFrame();
}

// delete the aircraft
_hlaAircraftManager.deleteLocalHlaAircraft(aircraft);

// disconnect from the RTI
_hlaWorld.disconnect();

This example will connect to the RTI and create an
aircraft. The position will be updated 20 times, once
each frame, and then the example will delete the
aircraft and disconnect from the RTI. The updated
position will be sent using time managed messages.

The only difference between this sample and the
previous sample is that we use time management to
pace the simulation instead of running in real-time
and sleep. Time management was activated when
we created the HlaWorld. As we have seen, it is
very easy to take a federate and modify it to use
time management.

The frame based sample can be compared to
another sample that uses the event based approach.
// define a listener to interactions
class FireListener extends HlaInteractionListener {
 // method to run when a Fire interaction is received
 public void fire(boolean local,
 HlaFireParameters fireParameters,
 HlaTimeStamp timeStamp,
 HlaLogicalTime logicalTime) {
 // check if any tank is hit
 for (HlaTank tank : _hlaTankManager.getHlaTanks()) {
 if (hitDetected(fireParameters, tank)) {
 // increase the damage with 1 if hit
 HlaTankUpdater updater = tank.getHlaTankUpdater();
 int initialDamageIfNotSet = 0;
 int newDamage =
 tank.getDamage(initialDamageIfNotSet) + 1;
 updater.setDamage(damage+1);

 // send the updated damage
 updater.sendUpdate();
 }
 }
}

// add listener
_hlanteractionManager
 .addHlaInteractionListener(new FireListener());

// connect to the RTI
_hlaWorld.connect();

while(_running) {
 // advance the logical time
 _hlaWorld.advanceToNextEvent();
}

This example will connect to the RTI and react to
“fire” interactions. If any tank is hit by a fire

interaction, the federate will update the damage for
the tank.

4.4 Choosing Lookahead

The frame size is usually easy to figure out from the
federation agreement and the requirements for the
simulator. But the value for the lookahead is harder
to choose wisely. The lookahead limits how far
other federates may advance their logical time. The
lookahead should be as large as possible, so that the
other systems may advance their time as far as
possible, but the federate may not send messages
with a logical time that is smaller than the current
time + lookahead.

The lookahead should be the same as your frame
length, but:

• It may be larger if the simulated system
has an inherent reaction time.

• It may be zero, if the simulator needs to
react to events in the current frame.

Let’s say that we have two systems, F1 and F2:

• F1 has a frame length of 1, the
computation time for a frame is 1 and the
lookahead is 1.

• F2 has a frame length of 10 and the
computation time for a frame is 10.

Should the lookahead for F2 be 1 or 10?

The total time to run the simulation is about twice
as long with one lookahead compared to the other!

• F1 and F2 can work in parallel with
F2lookahead = 10.

• When F2lookahead = 1 then F1 has to wait for
F2 for 9 time units after completing the
first frame, then F2 has to wait for F1.

The lookahead should be as large as possible, but
not larger.

4.5 More Advanced Features

The HLA Module will keep track of a lot of
information, handle the small details that are tricky
to get correct and provide useful convenience
functions, for example:

1. Time management is enabled on
connect() and disabled on disconnect().

2. Messages that are not time managed are,
by default, delivered in both the Granted
and Advancing state using asynchronous
delivery.

3. InvokeWhenGranted() is a convenience
function that makes it easy to schedule an
operation to run when the federate enters

the Granted state. Since messages are
received in the Advancing state, there is
often a needed to perform an operation
when all messages for the frame have been
received, i.e. when returned to the granted
state.

4. Federates that are not time regulating that
join a running federation will start at time
0. The HLA Module will take an initial
time step to start close to the other
federates.

5. Convenience methods for pacing and
detection of frame overruns.

All time representations that are compatible with
HLAinteger64Time and HLAfloat64Time from the
HLA 1516-2010 Evolved standard can be used with
Developer Studio. Since Developer Studio works
with any HLA version, this includes time
representations used in HLA 1.3, HLA 1516-2000
and HLA 1516 DLC. The previous HLA version
does not contain any standardized time
representations so time representations from
common RTIs are used instead.

If HLAinteger64Time is selected, the generated
HLA Module will use a long in Java API and an
int64_t in C++ API. For HLAfloat64Time a
double will be used in both the Java and C++ APIs.

4.6 Working with Pilot users

We worked with the existing users of Developer
Studio when we specified and designed the support
for time management. We listened to their
requirements, their use cases and how they wanted
their simulators to work with the HLA Module.

We also worked in close cooperation with pilot
users at TNO in Holland. They were involved in the
design of the API and used pre-releases and beta
version of Developer Studio in their real project.

5. Discussion
5.1 Challenges

The HLA API for time management is quite
complex, the sequence of calls and the valid values
for parameters are not obvious. How and when time
managed messages may be sent is not obvious.

It was a challenge to simplify this interaction to an
API that was easy to understand for a beginner, but
also was powerful enough for experienced HLA
developer with existing experience with the time
management services. Frame-based federates were
straightforward to understand and describe but
event-based federates, especially with zero
lookahead, were tricky to get correct.

It was also a challenge to decide what parts of the
HLA time management services to support and
which time representations to support.

5.2 Best Practices for an Easy Solution Pattern

Pitch Developer Studio™ provides a large number
of best practices have been incorporated in the
generated HLA Module. These range from design
and architectural practices down to low-level
programming patterns. This makes it possible to
easily add support for HLA time management to
simulator.

6. Conclusions
It is possible to add support for the HLA Time
Management services to a commercial OO-HLA
tool. It can be done without major changes for users
who have not started using time management, or
have no need for it.

An HLA Module is much easier to use than using
the general HLA API directly. The OO-HLA
middleware can handle a lot of the details and the
developer can focus the attention and energy on
developing a good model.

The HLA Module has been developed and tested
with pilot users, for example at TNO. They have
provided valuable feedback. In December 2012, the
support for time management was released with
Pitch Developer Studio™ version 3.0.

We believe that the support for HLA Time
Management in a commercial OO-HLA tool will
have a positive impact on the adoption of HLA over
the coming years, not only in the defense domain,
but also in civilian applications.

References

[1] “DoD M&S Glossary (5000.59-M)”,
MSCO, www.msco.mil.

[1a] Leslie Lamport, “Time, Clocks and the

Ordering of Events in a Distributed System”,
(1978), Communications of the ACM, 21(7)

[2] Richard M. Fujimoto, Richard M. Weatherly

“HLA Time Management and DIS”, (1995)

[3] “SISO Smackdown”,

www.sisosmackdown.com, January 2012

[4] “SISO Smackdown Wiki”,

www.smackdown.inarisolutions.com,
January 2012

[5] “Monte Carlo method”,
www.wikipedia.org/wiki/Monte_Carlo_met
hod, January 2012

[6] “The Java Language Specification”,

docs.oracle.com/javase/specs/jls/se7/html/jls
-17.html#jls-17.4, January 2012

[7] Hans-J. Boehm, Sarita V. Adve:

“Foundations of the C++ Concurrency
Memory Model”,
www.hpl.hp.com/techreports/2008/HPL-
2008-56.pdf, January 2012

[8] “High Level Architecture Version 1.3”,

DMSO, www.dmso.mil, April 1998

[9] IEEE: “IEEE 1516, High Level Architecture

(HLA)”, www.ieee.org, March 2001.

[10] SISO: “Dynamic Link Compatible HLA API

Standard for the HLA Interface Specifica-
tion” (IEEE 1516.1 Version), (SISO-STD-
004.1-2004)

[11] IEEE: "IEEE 1516-2010, High Level

Architecture (HLA)", www.ieee.org, August
2010.

[12] Frederick Kuhl, Richard Weatherly, Judith

Dahmann: “Creating Computer Simulation
Systems: an Introduction to the High-Level
Architecture”, Prentice Hall PTR (2000),
ISBN 0130225118

[13] IEEE: “IEEE 1278.1-2012, Distributed

Interactive Simulation (DIS)”,
www.ieee.org, 2012.

[14] “Test and Training Enabling Architecture

(TENA)”, www.tena-sda.org, January 2012.

[15] “Data-Distribution Service for Real-Time

Systems (DDS)”, portals.omg.org/dds,
January 2012.

[15a] Björn Möller, Filip Klasson, Björn

Löfstrand, Per-Philip Sollin: “Practical
Experiences from Four HLA Evolved
Federation”, 12S-SIW-057, SISO, March
2012.

[16] SISO: “Real-time Platform Reference

Federation Object Model 2.0”, SISO-STD-
001 SISO, draft 17, www.sisostds.org

[17] Mikael Karlsson, Fredrik Antelius, Björn

Möller: ”Time Representation and
Interpretation in Simulation Interoperability

– an Overview”, 11S-SIW-049, SISO, April
2011.

[18] “The HLA Tutorial”, www.pitch.se,

September 2012

[19] Björn Möller, Fredrik Antelius: “Object-

Oriented HLA - Does One Size Fit All?”,
10S-SIW-058, SISO, April 2010.

[20] Erich Gamma, Richard Helm, Ralph

Johnson, John Vlissides: “Design Patterns:
Elements of Reusable Object-Oriented
Software”, Addison-Wesley (1994), ISBN
0201633612

Author Biographies

FREDRIK ANTELIUS is a Senior Software
Architect at Pitch and is a major contributor to
several commercial HLA products, including Pitch
Developer Studio, Pitch Recorder, Pitch
Commander and Pitch Visual OMT. He holds an
M.Sc. in Computer Science and Technology from
Linköping University, Sweden.

MARTIN JOHANSSON is Systems Developer at
Pitch Technologies and is a major contributor to
several commercial HLA products such as Pitch
Developer Studio and Pitch Visual OMT 2.0. He
studied computer science and technology at
Linköping University, Sweden.

BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
strategic development of Pitch HLA products. He
serves on several HLA standards and working
groups and has a wide international contact network
in simulation interoperability. He has twenty years
of experience in high-tech R&D companies, with an
international profile in areas such as modeling and
simulation, artificial intelligence and Web-based
collaboration. Björn Möller holds an M.Sc. in
Computer Science and Technology after studies at
Linköping University, Sweden, and Imperial
College, London. He is currently serving as the vice
chairman of the SISO HLA Evolved Product
Support Group and the chairman of the SISO Real-
time Platform Reference FOM PDG.

	1. Introduction
	1.1 About simulation and time
	1.2 Drawbacks of not using Time Management
	1.3 Applications
	1.4 Making it easier to build Time Managed federations

	2. Time Management in HLA
	2.1 The Happened-Before Relationship
	2.2 Happened-Before in Distributed Simulations
	2.3 Time Managed operations
	2.4 Other types of Time Handling
	2.5 Definitions
	2.6 Advancing the Logical Time

	3. Object Oriented HLA
	3.1 Proxy Objects

	2. Your federate can create your own “local” object instances. The HLA module will then register the object in the federation. The attributes of that object can be updated with type-safe “set value” operations. These attribute values will automaticall...
	3.2 Example
	// connect to the RTI
	_hlaWorld.connect();
	// create an aircraft with callsign AirforceOne
	HlaAircraft aircraft = _hlaAircraftManager
	.createLocalHlaAircraft("AirforceOne");
	for (int i = 1; i < 20; i++) {
	// create an updater and set the (dummy) position
	HlaAircraftUpdater updater = aircraft
	.getHlaAircraftUpdater();
	updater.setPosition(PositionRec.create(i, i*20, i*300));
	//send the position update
	updater.sendUpdate();
	// sleep for 1 second
	Thread.sleep(1000);
	}
	// delete the aircraft
	_hlaAircraftManager.deleteLocalHlaAircraft(aircraft);
	// disconnect from the RTI
	_hlaWorld.disconnect();
	3.3 Pitch Developer Studio

	4. Adding Time Management to OO-HLA
	4.1 Principles
	4.2 Advancing the Time
	4.3 Simple Example
	// connect to the RTI
	currentTime = _hlaWorld.connect();
	// create an aircraft with callsign AirforceOne
	HlaAircraft aircraft = _hlaAircraftManager
	.createLocalHlaAircraft("AirforceOne");
	for (int i = 1; i < 20; i++) {
	// create an updater and set the (dummy) position
	HlaAircraftUpdater updater = aircraft
	.getHlaAircraftUpdater();
	updater.setPosition(PositionRec.create(i, i*20, i*300));
	//send the position update for the next frame
	updater.sendUpdate();
	// advance to next frame
	currentTime = _hlaWorld.advanceToNextFrame();
	}
	// delete the aircraft
	_hlaAircraftManager.deleteLocalHlaAircraft(aircraft);
	// disconnect from the RTI
	_hlaWorld.disconnect();
	// define a listener to interactions
	class FireListener extends HlaInteractionListener {
	// method to run when a Fire interaction is received
	public void fire(boolean local,
	HlaFireParameters fireParameters,
	HlaTimeStamp timeStamp,
	HlaLogicalTime logicalTime) {
	// check if any tank is hit
	for (HlaTank tank : _hlaTankManager.getHlaTanks()) {
	if (hitDetected(fireParameters, tank)) {
	// increase the damage with 1 if hit
	HlaTankUpdater updater = tank.getHlaTankUpdater();
	int initialDamageIfNotSet = 0;
	int newDamage =
	tank.getDamage(initialDamageIfNotSet) + 1;
	updater.setDamage(damage+1);
	// send the updated damage
	updater.sendUpdate();
	}
	}
	}
	// add listener
	_hlanteractionManager
	.addHlaInteractionListener(new FireListener());
	// connect to the RTI
	_hlaWorld.connect();
	while(_running) {
	// advance the logical time
	_hlaWorld.advanceToNextEvent();
	}
	4.4 Choosing Lookahead
	4.5 More Advanced Features
	4.6 Working with Pilot users

	5. Discussion
	5.1 Challenges
	5.2 Best Practices for an Easy Solution Pattern

	6. Conclusions
	References
	Author Biographies

