
Extended FOM Module Merging Capabilities

Björn Möller – Pitch

Andy Bowers – Mitre

Mikael Karlsson – Pitch

Björn Löfstrand – Pitch

bjorn.moller@pitch.se

bowersa@mitre.org

mikael.karlsson@pitch.se

bjorn.lofstrand@pitch.se

Keywords:

HLA Evolved, RPR FOM, FOM modules, DDM, Enumerations

ABSTRACT: The HLA Evolved specification describes a number of FOM Module merging principles whereby

classes, data types, etc. from different modules can be merged into the FOM of a federation. Based upon

practical experiences with FOM modules, this paper proposes three additional capabilities for the next HLA

version. They are particularly useful, and in some cases necessary, when reusing and extending standardized

FOMs, for example the RPR FOM. They can also be designed so that backwards compatibility is maintained.

The first capability is to enable a module to add attributes to an already existing object class. This enables

federations to extend object classes of a reference FOM without modifying the reference FOM.

The second capability is to enable a module to add DDM dimensions to an already existing attribute or

interaction class. This enables federations to use DDM filtering for concepts described in a reference FOM. An

even more powerful approach would be to not require dimensions to be explicitly specified in the FOM for

attributes and interactions classes, which would increase flexibility.

The third capability is a development time rather than runtime FOM merging capability. An enumerated data

type in a FOM should be able to reference and include a separately stored list of enumerated values. This would

simplify the usage of enumerations in the RPR FOM, where several enumerations, with a large number of

values, are shared with the DIS standard.

These three capabilities are presented in detail for discussion and possibly inclusion in the next version of HLA.

1. Introduction

This paper proposes three updates to the High Level

Architecture (HLA) standard. It contains

background, rationale, analysis, and some

discussion. The updates are mainly related to the

HLA Object Model Template but a few Runtime

Infrastructure (RTI) services from the HLA

Interface Specification are also involved.

The overall purpose of the updates is to add more

flexibility based on practical experiences. These

updates are mainly focused on long-term reuse.

They are based on practical experiences in several

projects. An example from work done by the

United States Joint Staff J7 Deputy Director

Joint Environment (DDJE) is presented and similar

experiences also exist in NATO project work.

1.1 Object Model Template, FOM and SOM

The HLA Object Model Template (OMT) is a

template that is used for describing object classes

with attributes, interactions with parameters, data

types, and several other things. It is used to describe

two things in HLA:

The Federation Object Model (FOM), which is

the information exchange model that is used by a

federation at runtime.

The Simulation Object Model (SOM) that is used

to describe the capabilities of a federate. The SOM

is typically used when judging the suitability of a

federate for a particular purpose. Not all of the

information in the SOM may actually be exchanged

by the federate in a particular federation.

In this paper, we will mainly talk about FOMs but

most of the discussion also applies to SOMs.

Every federation has a FOM. In many cases it

builds upon some standardized FOM, like the

Realtime Platform Reference FOM (RPR FOM).

This considerably improves the interoperability and

potential for reuse.

1.2 The evolution of the HLA Object Model

Template format

As the HLA standard has evolved, so has the Object

Model template format.

Figure 1: Evolution of the HLA OMT format

In the HLA 1.3 standard (1996-1998) the FOM data

was provided as a monolith. A Backus-Naur Form

(BNF) format was used. There were actually two

types of files: the regular OMT file and the FED

file, which was used to initialize a federation

execution. To keep these two files synchronized, a

popular solution was to use the OMDT format (not

officially part of the HLA standard) to store all of

the information in one single file which was then

used to generate the OMT file and the FED file.

In HLA 1516-2000, all of the information was

moved into one file. The HLA standard was

harmonized with XML, at that time an emerging

standard. The XML Document Type Definition

(DTD) was used to specify the format.

In HLA 1516-2010, FOM modules were

introduced. It now became possible to separate

different concerns into different FOM modules.

Development, maintenance, and reuse could now be

done in a modular and composable way. Other

improvements included the use of standardized

XML schemas for verification of format, syntax,

and consistency of FOMs and SOMs. Yet another

feature was the possibility to add custom XML tags

to the format.

2. FOM Merging in HLA Evolved

We will now look at FOM modules in the HLA

Evolved (HLA 1516-2010) standard. The basic idea

is that different FOM data can be kept in different

FOM modules, for example a Vehicle module, a

Radio module, and a Federation Management

module. This allows for modular development,

maintenance, and reuse of FOM data.

2.1 FOM merging using simple union

Let’s look at the most commonly used FOM data

and how they are merged: Object classes with

parameters, interactions with parameters, data

types, and dimensions. The basic principle is the

union operation. Here is an example with data types

(Figure 2).

Figure 2: Merging data types from two modules

Module M1 defines the data types SpeedInteger and

ColorEnum. Module M2 defines the data types

ColorEnum and FuelFloat. When these modules are

merged, the result is the union, i.e. SpeedInteger,

ColorEnum, and FuelFloat, if and only if the two

definitions of ColorEnum are equal. If the

definitions of ColorEnum differ then the operation

shall fail.

The same principle as for data types applies to

dimensions.

2.2 FOM merging using union of trees

For object and interaction classes, the union still

applies but using a tree structure. The simplest case

is shown in Figure 3.

Figure 3: Merging two sibling classes

Module M1 defines the object class

HLAobjectRoot.Vehicle. Module M2 defines the

object class HLAobjectRoot.Radio. When these

modules are merged, the result is the union, i.e.

both the Vehicle and Radio classes as subclasses to

HLAobjectRoot.

Another example is subclassing using FOM

Modules as shown in Figure 4.

Figure 4: Merging subclasses

Module M1 defines the class

HLAobjectRoot.Vehicle. Module M2 defines

HLAobjectRoot.Vehicle.Car. When combined, the

result is a hierarchy with the Car class as the

subclass of the Vehicle class. Module M2 may

either provide a “scaffolding” (empty) definition of

Vehicle or repeat the definition from M1. The

recommended approach is to use scaffolding

definitions to avoid having to maintain the same

class in two or more different modules.

Note that for repeated object or interaction classes

to merge successfully, they are required to have the

same properties, including the same set of

attributes/parameters.

2.3 When are FOM Modules merged?

Earlier HLA versions only support one monolithic

FOM for a federation execution. In HLA Evolved,

there are two possibilities:

A number of FOM modules can be provided when

the federation execution is created, using the Create

Federation Execution service. These modules are

merged and, if and only if the merge is successful,

the Federation Execution is created and initialized

with that FOM data. In practice, at least one FOM

module has to be provided since some FOM

module has to provide the Switches table, used to

configure certain RTI features. Roots for the object

and interaction class hierarchies as well as the

Management Object Model (MOM) are provided in

a FOM module called the Management

Initialization Module (MIM), which is provided

automatically by the RTI (although this can be

overridden with a custom MIM).

Additional FOM modules can be provided by a

federate that joins the federation by calling the Join

Federation Execution service. These modules are

merged with each other and the FOM data in the

federation. If and only if the merge is successful,

the federate is joined to the federation.

In most projects, there is also a third situation when

FOM modules are merged, namely during FOM

development using FOM editing software.

3. Extended Semantics for Merging

Classes

There is one limitation with the current FOM

module merging that has become obvious in

practical use. It is not possible to use an additional

FOM module to add attributes to an already defined

object class, without introducing a subclass. The

same applies to parameters and interaction classes.

Consider the following example: We have a FOM

module M1 that defines the Car object class with

the attributes Name, Color, Position and Speed. We

now have some additional federates that want to

add the attributes FuelType and FuelLevel. This can

be done by creating a specialized FOM module M2

that subclasses the class Car with the new object

class SpecialCar, as shown in Figure 5.

Figure 5: Adding more attributes using a subclass

This solution has a major drawback. If an existing

federate registers Car instances it will use the

original Car class, not the SpecialCar. We will need

to update existing federates which may not be

possible.

Another option would be to simply modify the

original module M1. This presents no problem

unless M1 is a reference FOM or a FOM that is

standardized in some other way. The result is that

we branch a standard FOM into numerous

customized versions, forfeiting the advantage of

standardized FOMs.

The first proposal in this paper is to allow new

modules to add new attributes to existing object

classes and new parameters to existing interaction

classes. The current requirement in the standard is

that repeated definitions of classes must be equal.

The new requirements would be that

a) when a definition of a class is repeated, the

merging process shall take the union of the

attributes/parameters of the classes.

b) If a definition for the same named

attribute/parameter for a given class exists in

several modules then they are required to be

equal.

The proposed, extended semantics is shown in

Figure 6.

Figure 6: Adding more attributes to a class

using a module

3.1 Analysis of technical implications

The proposed update would not create a problem

for existing federates, FOMs, and federation

agreements that use the HLA Evolved semantics.

The new semantics are a superset of the current

semantics and an existing federation would work as

before.

In RTI implementations there are a few challenges,

in addition to being able to implement the new

merging rules. Consider the case when a new

federate joins and loads a FOM module that adds

more attributes to an existing object class. What

implication does this have for already registered

object instances?

One could argue that only new object instances get

the new attribute. This would create confusion since

some instances of the same class have more

attributes than others. Federates that are aware of

the new attributes would need to take this into

account in their logic. In our example we could not

rely on all Cars having a FuelLevel. In some cases

this could result in instances of the same object

class having different behaviors depending on at

what time they were registered.

One could also argue that existing object instances

would get the new attribute automatically. But what

is the status of that attribute? It would probably be

unowned since the registering federate probably

only knows about (and publishes) the definitions in

the original FOM module. On the RTI

implementation side there are also issues with

adding data to object instances that have already

been discovered by several federates.

One approach that solves the above problem is to

only allow for FOM modules that add attributes to

existing classes in the Create Federation Execution

service call (i.e. not in the Join service call). The

drawback is that this creates different FOM

merging rules depending on if the FOMs are

provided during Create Federation Execution or

Join Federation Execution service call.

3.2 Temporary workaround

HLA users may want to achieve the above

functionality today, in particular if they want to use

reference FOMs, such as the RPR FOM. The

simplest way to do this is at development time. The

following procedure is then suggested:

1. The FOM development is based on a reference

FOM in the HLA 1516-2010 format.

2. Custom attributes, for example for the RPR

FOM “platform” class, are added in a separate

module.

3. These are merged, manually or using a tool

with the proposed semantics.

4. The result is a monolithic, extended RPR

FOM that is used to initialize the federation.

The same method can be used for adding

parameters to interaction classes.

4. Extended Semantics for Merging

Dimensions

The HLA Data Distribution Management (DDM) is

used to reduce the incoming (subscribed)

information to a federate. Subscriptions can thus be

based not only on classes and attributes (such as

“aircraft.marking”) but also on other dimensions,

such as a geographic grid overlaid on a battlefield

or which side the aircraft belongs to.

Figure 7 shows how the DDM dimensions Lat,

Long and Side are added to the spatial attribute in

the RPR FOM.

Figure 7: Spatial attribute with dimensions added

It is not possible to add more dimensions to an

already defined attribute or interaction without

updating the original FOM module. There is one

additional complication compared to attributes. It is

not possible to add more dimensions to an attribute

using subclassing. This means that there is currently

no way to add dimensions to a reference FOM

without modifying it.

Our proposal is to allow a new FOM module to add

new dimensions to an existing attribute or

interaction class. This should result in the attribute

or interaction having the union of all dimensions

specified in all FOM modules.

4.1 Analysis of technical implementation

The proposed update would not create a problem

for existing federates, FOMs, and federation

agreements that use the HLA Evolved semantics.

The new semantics are a superset of the current

semantics and an existing federation would work as

before. One minor issue is that if the Convey

Region Designator Sets switch is enabled, regions

using unexpected dimensions may be conveyed to

federates that are unaware of all FOM modules that

are currently loaded.

In RTI implementations there are fewer challenges

compared with the attribute case. The main issue

would be to implement the new merging rules.

4.2 A bolder proposal

It can also be argued that it is cumbersome to

specify numerous dimensions for numerous

attributes and interaction in a FOM. When these

dimensions are used at runtime, the RTI uses the

DDM information of the subscription and matches

it against the DDM information of the attribute

update or interaction, resulting in a binary yes/no

decision. There is little or no connection with the

class, attribute, interaction, or encoded value during

this operation. For many RTI implementations it

would make no difference to avoid specifying

which dimensions that are used for a particular

attribute or interaction. This is more a

documentation that is of interest to the federate

developer. A bolder proposal would be as follows:

1. Remove the Dimensions property of attributes

and interactions.

2. Allow any dimension in the FOM to be used

when subscribing to and sending interactions.

3. Allow any dimension in the FOM to be used

when subscribing to and updating attributes.

5. JLVC: A FOM Merging Use Case

The United States Joint Staff J7 Deputy

Director Joint Environment (DDJE) sponsors the

development and use of the Joint Live, Virtual,

Constructive (JLVC) Federation to support Joint

Force and Coalition training. JLVC is a RPR

FOMv2d17-based federation, but the JLVC FOM

has diverged significantly from the RPR FOM

during the past ten years as new training

requirements necessitated FOM additions, and

evolving data exchange agreements allowed

removal of existing RPR FOM transactions. JLVC

federation engineers realized the extent of the

JLVC FOM divergence from the RPR FOM as they

studied migrating JLVC from the HLA v1.3

specification to the IEEE 1516-2010 standard in

2010. They sought to take advantage of the

modularity feature of the new specification while

complying with its requirements. JS J7 experiences

with the new standard, and lessons learned in

merging FOMs, include an experiment in 2011

developing a “mixed-mode” HLA federation, in

which a federate that used the HLA 1516-2010 API

was added to an existing HLA 1.3-based federation

[1]. In addition, beginning in 2012, JS J7 started

migrating the JLVC to the current HLA 1516-2010

specification.

5.1 Extending the RPR FOM

In both the experiment and the JLVC migration,

JLVC engineers sought to use the RPR FOMv2d17

in its entirety as a reference FOM and extend it as

necessary to account for the additions implemented

in JLVC over the last ten years. JLVC engineers

therefore removed “non-RPR” attributes and

parameters from RPR FOM classes in the JLVC

FOM and built new JLVC classes comprised of the

removed attributes or parameters. These new JLVC

classes were then subclassed to the RPR

FOMv2d17 classes from which they were removed.

For example, JLVC_Aircraft extends the RPR2

object class “Aircraft” with attributes for Callsign,

IntelState, and so on. The new JLVC FOM

consisting of the extension classes was then merged

with the RPR FOM to form a single Federation

Description Document (FDD), adhering to the

1516-2010 specification by being expressed in

XML and in using standard datatypes. At this point,

federation engineers encountered the problem with

dimensions addressed in section 4. JLVC uses

DDM and while dimensions were easily added to

the attributes and parameters in the JLVC

extensions, the extension classes in the merged

FDD include inherited attributes/parameters from

RPR2 classes which did not have dimensions. In

order to have a useful FDD, dimensions were added

to the RPR FOM modules. This was necessary, but

it violates the IEEE 1516.2-2010 rules in section 7

and Annex C for merging FOMs.

5.2 Object class name issues

JLVC Engineers encountered another issue during

the “mixed-mode” federation experiment, that of

misaligned attributes and unrecognized names. As

previously reported in [6], the RTI used in the

experiment required that the 1516-2010 federate

initiate the federation creation and that data

exchanges with the 1.3 federate were based on the

1516-2010 FOM file. In most cases, the class name

of the leaf class in the 1516-2010 FOM was not

recognized by the 1.3 federate because it was an

extension class name, e.g. JLVC_Name, not used in

the 1.3 FOM. Some classes in the 1516-2010 FOM

kept the 1.3 FOM name, for example

“BaseEntity.PhysicalEntity.Platform.GroundVehicl

e.SPArtillery”, because all of the JLVC-specific

attributes could be added to the “SPArtillery” class

in the 1516-2010 FOM since “SPArtillery” is not a

RPR FOM class name. Although in this particular

class the two FOMs had the same attributes, to

include inherited attributes, the order of the

attributes was different in the two FOMs and that

misalignment also precluded data exchange. JS J7

experience therefore supports the proposal

recommended in section 3 for allowing new

modules to add new attributes to existing object

classes and new parameters to existing interaction

classes; this would solve both the name and

attribute alignment issues.

5.3 Road ahead

In 2013, JS J7 intends on decomposing the new

JLVC FDD into separate modules. These will

maintain the class relationships expressed in the

current FDD, but enable subsequent development,

maintenance, and reuse based only on relevant

modules. JS J7 has drafted these modules based on

the RPR FOM modules which have been proposed

to SISO as candidates for RPRv3.

6. Thoughts on Enumerations

A look at the RPR standard reveals that there are

many enumerations. These can roughly be divided

into two types of enumerations:

1. Enumerations that don’t change much over

time. In many cases they have a fairly limited

set of enumerators (values).

2. Enumerations that are frequently updated,

usually with additional enumerators. They

usually have a large number of enumerators.

Sometimes they are maintained as a separate

project, possibly in coordination with other

standards.

The second type of enumerations are less suitable

for maintenance as part of a reference FOM due to

the different update cycles and possibly the need to

update several lists in parallel. It is also

inconvenient to store a large number of enumerated

values as part of a FOM.

So how should enumerated data types that are

frequently updated be maintained? There are at

least two possible approaches.

Put the enumerated data type in a separate FOM

module. Develop software (like applications or

XML transformations) that creates this FOM

module from a list of enumerators specified in some

other format. This mechanism is non-intrusive and

can be used for the current standard. The drawback

is that there is some additional information, like the

Identification table, that should be included.

Use the Xinclude feature of XML that allows for

inclusion of one XML document or document

fragment into another. The exact format of the

fragment needs to be specified for this mechanism

to be useful.

Both of the above approaches would require some

type of configuration management in order to be

useful in practice. This question needs to be further

analyzed and discussed in the HLA Evolved

product support group.

The RPR FOM Drafting Group has encountered the

above issue and has chosen to put enumerations in

separate FOM Modules for the modular HLA 1516-

2010 version of the RPR FOM 2.0. This brings up a

new interesting topic: not only do we need to have

reference FOMs that can be extended in a well-

controlled way but we also need to manage how

certain parts of a reference FOM can be replaced.

7. Conclusion

This paper proposes three extensions to the FOM

merging of HLA 1516-2010. The two major

extensions are:

Allow the addition of new attributes to an existing

object class using a new FOM module.

Allow the addition of new dimensions to an

existing attribute or interaction class using a new

FOM module.

One of the main drivers for these extensions is the

use of reference FOMs that should stay unmodified.

A practical use case is presented to support this.

The impact of the above updates is minimal for

existing federations and federates since a superset

to the existing functionality is proposed. The bigger

impact is on the RTI implementation side.

The third extension relates to the maintenance of

enumerated data types with a large number of

enumerations. Some thoughts have been presented.

These proposals and the technical analysis should

be further discussed with the SISO HLA product

support group. If accepted, some additional work is

needed to produce accurate standards texts.

References

[1] “High Level Architecture Version 1.3”,

DMSO, www.dmso.mil, April 1998

[2] IEEE: "IEEE 1516, High Level Architecture

(HLA)", www.ieee.org, March 2001.

[3] IEEE: "IEEE 1516-2010, High Level

Architecture (HLA)", www.ieee.org, August

2010.

[4] SISO: “Real-time Platform Reference

Federation Object Model 2.0 ”, SISO-STD-

001 SISO, draft 17, www.sisostds.org

[5] Björn Möller, Björn Löfstrand.

“Getting started with FOM Modules”,

Proceedings of 2009 Fall Simulation

Interoperability Workshop, 09F-SIW-082,

Simulation Interoperability Standards

Organization, September 2009.

[6] Andy Bowers, Brian C Gregg, John

Tufarolo. “FOM Modularity and Mixed-

Mode Federation Design and Development:

Challenges and Observations”, Proceedings

of 2011 Fall Simulation Interoperability

Workshop, 11F-SIW-029, Simulation

Interoperability Standards Organization,

September 2011.

Author Biographies

BJÖRN MÖLLER is the vice president and co-

founder of Pitch Technologies, the leading supplier

of tools for HLA Evolved, 1516-2000 and HLA

1.3. He leads the strategic development of Pitch

HLA products. He serves on several HLA standards

and working groups and has a wide international

contact network in simulation interoperability. He

has twenty years of experience in high-tech R&D

companies, with an international profile in areas

such as modeling and simulation, artificial

intelligence and Web-based collaboration. He is

currently serving as the vice chairman of the SISO

HLA Evolved Product Support Group.

ANDY BOWERS is a Lead Simulation Modeling

Engineer in the MITRE Corporation's Modeling &

Simulation Engineering Department. He is a retired

United States Army officer and has more than 15

years of experience in simulation and federation

design and development for military training. He

has supported several NATO Modeling and

Simulation Group (NMSG) efforts and currently

supports the Joint Staff J7's Joint Live, Virtual,

Constructive (JLVC) Training Federation System

Engineering Team. His interests include multi-

resolution modeling and simulation interoperability.

MIKAEL KARLSSON is the Infrastructure Chief

Architect at Pitch overseeing the world’s first

certified HLA IEEE 1516 RTI as well as the first

certified commercial RTI for HLA 1.3. He has

more than ten years of experience of developing

simulation infrastructures based on HLA as well as

earlier standards. He also serves on several HLA

standards and working groups. He studied

Computer Science at Linköping University,

Sweden.

BJÖRN LÖFSTRAND is the Services and

Training Manager at Pitch Technologies. He has

more than 15 years of experience in distributed

simulation architecture and design. He has been

supporting several simulation standardization

activities within SISO including HLA, DSEEP and

BOM. He is also supporting several NATO

Modeling and Simulation Group (NMSG) activities

and is currently leading the technical activities in

MSG-106 for defining the NATO Education and

Training Network federation design. Mr Lofstrand

has a M.Sc. in Computer Science from the

Technical University of Linköping in Sweden.

