

Developing an HLA Tutorial: Philosophy and Best Practices

Björn Möller, Pitch Technologies, Sweden
Steve Eriksson, Pitch Technologies, Sweden
Åsa Wihlborg, Pitch Technologies, Sweden

bjorn.moller@pitch.se

steve.eriksson@pitch.se
asa.wihlborg@pitch.se

Keywords:
HLA, Tutorial

ABSTRACT: A standard, like HLA, needs to be exact, complete and unambiguous. This may not be optimal for
a beginner wanting to learn HLA. An up-to-date HLA Tutorial document has now been developed. This paper
summarizes some of the philosophy of the tutorial. Several best practices on how to use the standard are also
covered in the tutorial.

One of the philosophies of the tutorial is to describe how services from different service groups are used to solve
common tasks instead of strictly describing the structure of the HLA standard. Another philosophy is to
emphasize how concepts from the HLA Interface Specification and the HLA Object Model Template are used
together.

The best practices covered include low-level aspects like optimal memory allocation, handling of HLA service
exceptions as well as life-cycle management of shared objects. Selected architectural aspects are also covered,
like the use of a federate architecture that separates HLA concerns from domain simulation concerns, federate
testing strategies and a basic Federation Agreement sample.

The tutorial, together with C++ and Java sample code, is freely available to industry, academia and anyone
interested in learning HLA.

1. Introduction
A publicly available HLA Tutorial [1] has been
developed. This paper describes the tutorial and
summarizes the philosophy of the tutorial, the best
practices presented and finally some thoughts and
insights gained during the development.

1.1 Standards versus Tutorials

A beginner wanting to learn HLA, or any standard,
may initially be disappointed by the typical
standards document. Every feature is described in
the utmost detail with a highly specialized
terminology. It may take quite a lot of reading to
figure out which combination of services that are
needed to solve a particular problem. However, the
primary purpose of a standards document is to
provide a complete, consistent and unambiguous
specification, not to give an introduction for a
beginner.

Teaching HLA is more similar to telling a story,
introducing new concepts, step by step, as they are
necessary to fill a particular purpose. Every service
should be put into a context of how it is used. The
user needs to understand the main principles and
central parts of the standard. Additional details can
be studied later on when needed.

1.2 Evolving standards and best practices

HLA was incepted in the mid 90’s. HLA 1.3 [2]
was released in 1998, HLA 1516-2000 [3] in 2000,
the SISO DLC [4] standard in 2004 and HLA
Evolved [5] in 2010.

There is very little introductory material aimed at
developers. The original HLA book [6] was
released in 2000 and is based on HLA 1.3. There is
also an older programmers guide [7] that came with
the DMSO RTI that is also based on HLA 1.3.
There are some practical migration guides for
migrating to HLA 1516-2000 [8] and HLA Evolved
[9]. But in general there is a lack of a practical and
up-to-date tutorial for HLA. This may not be a
problem for the seasoned HLA developer, but it is a
barrier to entry for new persons and organization
that need to start using HLA, thus limiting the
success of HLA.

Not only the standard itself but also best practices
for its usage evolve over time, based on experiences
from building federations. Many projects and
organizations have reached consensus on how to
best use the HLA architecture and services over
time. This also needs to be reflected in a tutorial of
2012.

1.3 The HLA Tutorial – why and how

The HLA Tutorial was developed to promote the
HLA standard and to make it easily accessible for
industry, academia and anyone interesting in the
subject. Over the past years there has also been a
growing user base, in particular in the civilian
domain, that has requested an easily available, up-
to-date tutorial. Another issue is that there is
currently no tutorial that focuses on how federation
agreements, object modeling and HLA services
play together.

The tutorial is intended to complement the standard.
The tutorial document and the samples represent
many man-months of work from experienced HLA
instructors and developers. The tutorial is intended
to be vendor neutral (although screen shots are
generally taken from Pitch products). The source
code should work with any HLA Evolved RTI.

The HLA Tutorial builds upon almost 15 years of
experience from teaching HLA in courses and
seminars in more than a dozen of countries in four
continents.

2. Overview of the Tutorial
The tutorial is freely available as a PDF document
that may be redistributed. There is also a bigger
package, the “HLA Evolved Starter Kit”, which
contains sample FOMs and federates in C++ and
Java as shown in Figure 1. The tutorial can be
downloaded separately or as a part of the Starter
Kit.

Figure 1: Components of the HLA Evolved Starter

Kit and additional HLA software

These samples are intended to work with any HLA
Evolved compliant RTI. In case the user does not
already have an HLA Evolved RTI or an HLA
OMT tool, free versions are available for download.

2.1 Structure of the tutorial

The tutorial consists of two parts but, to date, only
the first part has been released. Part one focuses
FOM development and the basic HLA services:
federation, declaration and object management. Part
two focuses on Ownership Management, Time
Management, DDM, MOM and other more

advanced concepts. Part one contains the following
major sections:

Chapter 1 gives an introduction and describes the
purpose of HLA (interoperability and reuse), a
number of practical applications of HLA and a few
words on policy, standardization and how standards
can enable a market place.

Chapter 2-3 describes the architecture, topology
and services of HLA, provides an overview of the
architectural aspects of HLA and introduces the
basic terminology without going into detail. It
presents HLA as a modern, service oriented,
architecture based on a service bus.

Chapter 4-9 provides a step-by-step description of
how to build federates for a Fuel Economy
Federation. The FOM development and the use of
HLA services in the federate code are intertwined
to illustrate how they play together. The PDF
document contains simplified pseudo-code whereas
the C++ and Java samples provide more details
such as exception handling.

Chapter 10 describes basic and intermediate
techniques for testing and debugging federates and
federations.

Chapter 11 describes different types of Object
Oriented HLA. It also provides a small amount of
sample code.

Chapter 12 summarizes the tutorial, provides a
short description of DSEEP and points at some
additional HLA services that will be covered in part
2 of the tutorial, for example Time, Ownership and
Data Distribution Management as well as the
Management Object Model.

Appendix A and B provides a complete Federation
Agreement and FOM for the Fuel Economy
Federation.

Appendix C provides federate descriptions and file
formats (scenario file and federate configuration
file) for the Fuel Economy Federation.

Appendix D provides eight lab instructions for
readers that have installed the sample federates on
his computer. The instructions describes how to run
the federates and what code to inspect for each
chapter. The advanced user may also modify or
extend these federates.

Appendix E describes the classical Restaurant
federation and how to run it.

Appendix F gives an overview of the HLA Rules.

2.2 The Fuel Economy Federation

The main example used in the tutorial is the Fuel
Economy Federation. Its purpose is to evaluate the

fuel consumptions when multiple cars, simulated by
different federates, drive along a particular route
specified in a scenario file. The interoperability
aspects are covered in detail, but the scenario
format and fuel consumption models are
intentionally simplified.

The federation has three types of federates. The
CarSim simulates one or more cars. The
MapViewer visualizes the cars on a map and in a
list. The Master controls the federation. The
federate types matches what is found in many real
federations.

In addition to exchanging information about cars
and fuel there are two patterns in the federation.
The Master controls the scenario selection.
Participating federates signal whether they were
able to load the selected scenario or not. The Master
also controls the start and stop of the scenario time,
i.e. the simulation. The scenario is run at scaled real
time, for example 5.5 or 1.0 times the real time.
These patterns are described in the included
Federation Agreement.

2.3 The Restaurant Federation

This federation is provided for the advanced reader.
It models a sushi restaurant where chefs prepare
sushi and places them on boats that transport them
to customers. It was originally developed for HLA
1.3, using an older version of Java. It was originally
included in the HLA book [6]. It has now been
migrated to HLA Evolved. Some of the code does
not always follow what we today consider best
practice. This sample is included despite this since
it uses a wide range of HLA services.

3. Philosophy
There are many ways to teach HLA. This section
summarizes both lessons learned from giving a
large number of courses as well as some design
choices. Here are the most important philosophies.

A tutorial aimed at the practitioner

HLA and interoperability may well be described
from a theoretical or architectural point of view. In
this case we have decided to target practitioners that
need to develop real HLA federates and federations.
This requires more practical how-to advice, and
reasonably complete code examples.

Simplify and focus on what´s useful

Many of the chapters have been shortened and
simplified several times. More than half of the text
of the first draft has been removed. This text was
mainly advanced discussions. The text has been
simplified as far as possible to make it easy to
grasp. New concepts have been introduced only
when they can be easily understood.

Present HLA as a modern software architecture

Ten years ago HLA was often presented primarily
as a US DoD strategy. While HLA still has a
strategic position in NATO and the US DoD,
todays developers are more interested in its virtues
as a modern software architecture, in particular if
they work outside of the defense domain. There are
today several related architectural styles that can
help people understand HLA, for example
Information Bus and Enterprise Service Bus.

Learn by common tasks

It may be tempting to structure an HLA tutorial
according to the three standards documents and
their chapters. One problem with this is that it takes
a long time before the relationships between
different parts of the standard starts making sense.
The philosophy chosen is instead to show how to
perform common tasks. Figure 2 shows an example
of this. It illustrates which part of HLA that you
need to use to send an interaction.

Figure 2: Parts of the HLA specification used to
send an interaction

First you need to design an interaction with
parameters in the OMT. You also need to define
data types for any parameters. Then you need to use
the services in the Interface Specification to get
handles, publish and subscribe the interaction and
finally send it. You may also consider using
encoding helpers, which is not shown in figure 2.

The task-oriented approach clarifies how different
parts of the standard are used together. It also
provides more “instant gratification” to the
developer.

Highlight federation agreements and object
modeling

Many federate developers today underestimate the
value of the FOM concept and the importance of
quality FOMs. The approach described in Figure 2

also helps the developer understanding the
relationship between the FOM and the federate
code.

The FOM, on the other hand, only provides a lower
level description of the overarching Federation
Agreement, which gives the bigger picture of how
to use the information in the FOM.

While other efforts, like FEAT [10] attempts to
advance the state of the art with respect to more
advanced federation agreement, this tutorial seeks
to introduce newcomers to a very simplistic but
correct and complete federation agreement.

Use simple pseudo-code in the main text

To clarify how the services are used, the main text
of the tutorial uses simplified pseudo-code. The
C++ and Java sample code, on the other hand,
contains full detail and extensive exception
handling. Since many beginners tend to reuse
sample code it is important to avoid simplifying for
example exception handling. Inferior exception
handling often makes federation debugging more
time-consuming than necessary.

Use simple english

It is likely that the majority of todays´ HLA users
do not have English as their first language. Because
of this the tutorial has been written in a simple and
friendly tone.

4. Best Practices
HLA offers a large number of services. The HLA
tutorial presents how to use them in a simple
federation, step by step. In many cases there are
several ways to approach a problem, to design a
federate and to use the HLA services. The HLA
tutorial tries to present a number of best practices
that are on an appropriate level for beginners. This
section presents some of them.

Note that more advanced or large federates and
federation may need to deviate from some of these
best practices. Still it is highly useful for a
beginners to get their first federates well designed
from a general perspective.

4.1 Architecture and design

These best practices apply to the overall
architecture and design of federates and federations.

1. Carefully design your federation agreement
and FOM before attempting to write any code.
If the federation agreement already exists,
study it carefully. Starting to design your
federates without a proper federation
agreement and an agreed upon FOM often
leads to costly redesign of the federates. When
designing other software it is often possible to

“wing it” when problems occur, but since
federates that you write need to be compatible
with other federates it is not as easy in a
federation. Not having a clear view of how
everything is supposed to work when starting
can lead to different behaviors in different
federates depending on the implementers
interpretations.

2. Use a coordinated approach for handling
scenario time and scenario data across the
federation.

Even if your federation is not time managed
the concept of scenario time will exist in the
simulators. In many cases federates in a
federation will execute in scaled real time.
Think through how time will be handled and
use a similar approach in all federates when
possible. If one federates supports pausing but
none of the other federates does, then that
feature will not be useful in the federation.
Running at a faster or slower pace, pausing
and jumping in time, are some things that you
should consider even for non time-managed
federations.

Using common scenario data removes the
possibility that simulators disagree on the
content of the simulation. It also minimizes
scenario development work and minimizes the
risk for uncorrelated scenario data.

3. Use a specialized federate for starting,
stopping and selecting scenario. This follows
the principle of separation of concerns. The
simulators are experts in simulating a system
or parts of a system, not coordinating
simulators in a distributed environment.
Centralized handling and coordination makes
it easier to have clear and well-known states of
the simulators in the federation execution.

4. Put the HLA interface code in a separate
module. This is also a question of separation
of concerns. In software development it is
good practice to create modular and loosely
coupled system. Encapsulate changeable
design decisions. The different modules
should have a specific purpose and be as
independent as possible from other modules.
This approach makes it easier to understand
and develop the different modules. It also
makes it easier to find faults in the system and
changes are easier to make since they won’t
affect the whole system. Another advantage of
using a modular design is that simulation
experts can develop the simulation part and

HLA experts, maybe external developers, can
develop the HLA part.

5. Tailor the HLA interface module to the
specific subscription needs of each federate
for best performance. It is often a good idea to
create general and reusable software
components. However, when building an HLA
module for a certain simulator and federation
it might not be the best choice. The major
problem is that it may subscribe to more
information than needed in a particular
federate, causing increased usage of CPU,
memory and networking resources. It might
also make your system more error prone,
harder to understand and harder to maintain.
Our recommendation is to optimize for the
current environment. Modular design makes it
relatively easy to change or switch the tailored
HLA interface.

4.2 Program structure

These best practices apply to the use of HLA
services within a federate.

1. Register objects without reserving HLA object
instance names. Instead use an attribute for
naming. HLA object instance names are
globally unique. It’s relatively costly to
register a unique name in the federation. The
central RTI component has to check for
uniqueness and your application has to handle
any error thrown by the RTI should the name
already be taken. Instead, have the RTI create
a unique name and use an attribute in the
object for the name.

2. If you still do reserve names and you need to
reserve more than a few HLA object names,
use the Reserve Multiple Object Instance
Names service.

3. Use a table or hash map for storing the
references for discovered object instances. If
possible consider a lookup function to quickly
locate instances based on name, handle and
other relevant keys. Consider having one table
or hash map for each object class.
One of the functions an HLA module is likely
to execute very often is to translate between a
simulation objects id and the corresponding
HLA object.

4. Implement the Provide Attribute Value
Update callback so that other federates,
possibly late joiners, can get the mot recent
values. Use this in conjunction with the Auto
Provide switch, at least for smaller
federations. Failing to implement this support
can make it impossible for other federates to

join the federation when it is already
executing. Not supporting late joiners leads to
problems even for federations with a fixed
federate lineup. For example, if a federate
crashes during an execution it cannot rejoin
the federation. This might make it necessary to
restart the whole federation every time a
federate crashes.

4.3 Low level programming

These best practices apply to detailed programming
aspects. In most cases they are independent of the
programming language used.

1. Allocate memory for objects like encoding
helpers in the initial part of the program, not in
the main loop. Encoding helpers can be
relatively expensive to create and they are
likely to be used very often. For optimum
performance you should therefore create them
once during initialization.

2. Get handles from the RTI in the initial part of
the program, not in the main loop.

3. Handle all HLA service exceptions.
Instead of just terminating your application if
it encounters an exception you should handle
it so the application degrades gracefully or at
least clean up before terminating. Clean up
includes resigning and disconnecting from the
federation and perhaps hand over ownership
of simulation objects.

4. Be careful with exceptions that are related to
any user input or the current technical
environment (for example cannot find FOM
file, bad IP address). Give the user an
opportunity to fix these. Configuration
problems related to federation name, FOM file
to use and IP address of the RTI central
component can easily be remedied by the user
or a technician so make sure to give clear error
messages.

5. Use encoding helpers to get correct encoding.
Utilizing the provided encoder classes is also a
good way to be sure that the data is encoded
correctly for any operating system, CPU and
development environment.

6. Assume that all data received may be incorrect
or incorrectly encoded. As with all application
development, don’t make your code rely upon
external components to provide you with
correctly formatted data. Failing to do this
may open up for security breaches and
unnecessary termination of your application.

7. Several callbacks (like Reflect Attribute
Values) have several different

implementations, with different parameter
sets, in the API. Handle al versions, for
example by dispatching them to one common
implementation. In most cases it’s a good
practice to handle update of attributes in a
uniform way. Having one implementation for
each overloaded version of the callback
method makes your code harder to maintain.
The more code you write the risk of
introducing bugs increase. Subtle differences
in the overloaded methods may create hard to
find bugs. More code often means more tests
and maintenance.

4.4 Testing

These best practices apply to the testing of federates
and federations.

1. Verify that all operations, like declarations
and object registrations, work as intended by
inspecting the RTI user interface.

2. Verify that your federate sends correctly
encoded data before trying to use it in a
federation. A well behaved federate should
only send properly formatted data according to
the FOM. Don’t assume that the other
federates can handle bad data otherwise you
may make them terminate ungracefully.

3. Test your federates against known-good
federates and recorded data. This is an
excellent way to pinpoint where in a
federation a problem occurs. For example if
your simulated entities don’t show up where
they are expected in a viewer you can connect
it to another proven viewer to determine if it’s
your federate that sends bad position data or
the viewer that displays it incorrectly.

5. Discussion
As can be understood from the previous
descriptions a lot of topics have been covered in the
tutorial. In this discussion we would like to focus
on some topics that we found more difficult to fit
into the tutorial.

5.1 The SOM

While the SOM is in no way a difficult concept to
explain, it was difficult to find an obvious place to
describe how it fits into the federation development
process in the tutorial. One approach used to
present the SOM is the use of Publish/Subscribe
Matrix. Figure 3 shows such a matrix. Each row
represents an attribute or an interaction. Each
column represents a federate. In each cell we then
specify whether the federate publishes or subscribes
to that attribute or interaction.

 Fed A Fed B Fed C

Car.Name Pub Pub/Sub Sub

Car.Position Pub Pub/Sub -

Start Pub Sub -

Figure 3: A Publish/Subscribe Matrix

This type of matrix offers a good starting point for a
discussion about SOMs.

5.2 The HLA Rules

In most training events we have found that the HLA
Rules seem very abstract when presented early in
an HLA training event. After a few days of HLA
training most participants find them very easy to
understand. Several rules are based more or less on
common sense, saying that a federate shall hold
what it promised to do. Other rules are less trivial
and may require some additional discussion, for
example that the RTI will only transmit, not store,
any data values for attributes and interactions.
Several of the rules relate to the SOM, which is not
covered in detail in the tutorial. The approach in the
the tutorial is to put the HLA Rules in an appendix.

5.3 Getting hold of the HLA specification

The HLA Tutorial makes extensive references to
the HLA specification, which is not available for
free. Some universities have purchased full access
to all IEEE standards, which makes it easy for
students and staff to get them. Other readers may be
SISO members, which gives them full access to the
standard at a modest price. Still a large number of
readers will have difficulties getting the HLA
specification for various reasons. Students in many
parts of the world may consider the price high.
Complicated administration may slow down a
purchase for a reader in a large organization. Today
many readers expect software standards to be freely
downloadable from the Internet, which may create
some disappointment.

5.4 Understanding commonly used FOMs

Most people learning HLA are interested in
understanding not only HLA but also commonly
used FOMs. For the defense sector this is usually
the Real-time Platform Reference FOM (RPR
FOM) [11]. This is a fairly advanced FOM with
complex data types. One challenge is that such a
FOM is too complicated to be used for explaining
basic HLA concepts. It may actually require a
tutorial on its own. Another challenge is that many
new HLA users come from other domains than
defense.

For the HLA tutorial we have chosen to use a very
basic FOM that allows us to gradually introduce
more and more advances concepts. It is possible
that part two of the tutorial may contain overviews
of some commonly used FOMs.

6. Conclusions
A freely available HLA Tutorial has been produced.
The tutorial is aimed at the practitioner. A software
package with sample federates as well as free RTI
and OMT software is also available.

Among the most important features of this new
tutorial is that it presents HLA as a modern,
service-oriented architecture. Another feature is to
present the design chain that starts with the
Federation Agreement, continues to the FOM and
finally uses the HLA services. A third feature is to
teach HLA based on tasks, like sending an
interaction, rather than on the structure of the
standard.

A large number of best practices have also been
incorporated in the tutorial. These range from
design and architectural practices down to low-level
programming and testing.

We believe that the tutorial will have a positive
impact on the adoption of HLA over the coming
years, not only in the defense domain, but also in
civilian applications.

References

[1] “The HLA Tutorial”, www.pitch.se,

September 2012

[2] “High Level Architecture Version 1.3”,

DMSO, www.dmso.mil, April 1998

[3] IEEE: "IEEE 1516, High Level Architecture

(HLA)", www.ieee.org, March 2001.

[4] SISO: “Dynamic Link Compatible HLA API

Standard for the HLA Interface Specifica-
tion” (IEEE 1516.1 Version), (SISO-STD-
004.1-2004)

[5] IEEE: "IEEE 1516-2010, High Level

Architecture (HLA)", www.ieee.org, August
2010.

[6] Frederick Kuhl, Richard Weatherly, Judith

Dahmann: “Creating Computer Simulation
Systems: an Introduction to the High-Level
Architecture”, Prentice Hall PTR (2000),
ISBN 0130225118

[7] DMSO: “RTI 1-3-Next Generation

Programmer’s Guide Version 3.2”,

September 2000, US Departement of
Defense: Defense Modeling and Simulation
Office

[8] “Porting a C++ Federate from HLA 1.3 to

HLA 1516” & “Porting a Java Federate from
HLA 1.3 to HLA 1516”, March 2003,
http://www.pitch.se/support/pitch-prti-1516

[9] “Migrating a Federate from HLA 1.3 to

HLA Evolved", November 2010,
http://www.pitch.se/technology/about-hla-
evolved

[10] “FEAT PDG - Federation Engineering

Agreement Template”, www.sisostds.org

[11] SISO: “Real-time Platform Reference

Federation Object Model 2.0 ”, SISO-STD-
001 SISO, draft 17, www.sisostds.org

Author Biographies
BJÖRN MÖLLER is the Vice President and co-
founder of Pitch Technologies. He leads the
strategic development of Pitch HLA products. He
serves on several HLA standards and working
groups and has a wide international contact network
in simulation interoperability. He has twenty years
of experience in high-tech R&D companies, with an
international profile in areas such as modeling and
simulation, artificial intelligence and Web-based
collaboration. Björn Möller holds an M.Sc. in
Computer Science and Technology after studies at
Linköping University, Sweden, and Imperial
College, London. He is currently serving as the vice
chairman of the SISO HLA Evolved Product
Support Group and the chairman of the SISO Real-
time Platform Reference FOM PDG.

STEVE ERIKSSON is a software developer at
Pitch Technologies and has been involved in the
development of several commercial HLA products.
He received his BSc degree in Computer science
from Linköping University in Sweden.

ÅSA WIHLBORG is a Systems Developer at
Pitch Technologies and a major contributor to
commercial HLA products such as Pitch Visual
OMT 2.0. She studied computer science and
technology at Linköping University, Sweden.

