

Scalable and Embeddable Data Logging for

Live, Virtual and Constructive Simulation:

HLA, Link 16, DIS and more

Björn Möller, Pitch Technologies, Sweden

Fredrik Antelius, Pitch Technologies, Sweden

Tom van den Berg, TNO, The Netherlands

Roger Jansen, TNO, The Netherlands

bjorn.moller@pitch.se

fredrik.antelius@pitch.se

tom.vandenberg@tno.nl

roger.jansen@tno.nl

Keywords:

Simulation, Training, After Action Review, Interoperability, Data logging, HLA, DIS, Link 16, Voice, Viking

ABSTRACT: One of the most important simulation assets is the data that is collected during executions.

Imagine being able to look back, analyze and reuse the data of simulations that have been run during the last

decade. However, data logging has a number of challenges, not the least in today’s environment where we need

to train jointly and combined and mix a number of Live, Virtual and Constructive simulators, using different

standards.

This paper summarizes some requirements for LVC data logging as well as replay. It also describes some early

experiences from developing and testing a data logger that can perform fully synchronized, simultaneous data

logging of HLA, DIS, Link 16 and other data streams. Some details are given on aspects like embedding, chase

play, ownership and import/export. Some challenges and limitations when mixing these different interoperability

and data link standards are also covered.

1. Introduction

Data is one of the most important results or outputs

of computer-based modeling and simulation. Even

though computer-based modeling and simulation is

a relatively young discipline, many models have

been executed over the years, a lot of data has been

produced and most of this output data is forever

lost, in many cases since it was not logged.

No matter if a simulation is executed in real-time or

using logical time, time-stamped simulation data

can be logged for later use, like analysis or after-

action review. This data will typically have a closer

connection to the original set of simulators that

produced the data than what a naïve user may

initially think. It will usually be necessary to

understand the goal, the assumptions and the

limitations of the original simulators and scenarios

to be able to play it back and use in a meaningful

way. Nevertheless, the simulation data can be

highly useful, both for the original purpose and for

new purposes, such as input to other simulations,

testing, training, and for new types of analysis.

1.1 An LVC perspective on data logging

Taking a Live-Virtual-Constructive [1] perspective

on data logging adds a number of additional aspects

to the above, for example:

 A challenging mix of simulation standards and

protocols may need to be supported, usually

together with a set of corresponding

information exchange data models (“FOMs”)

that may be more or less coherent. More

widely used types of data to be recorded

include HLA [2], often with the RPR FOM

[3], DIS [4] and voice (both as part of the

HLA/DIS communication and using other

ways of communication). Additional types of

data may include Link 16 [5], TENA [6],

streaming video, and proprietary protocols, for

example for Command and Control systems.

 In a virtual or constructive model the data

values in each model may define the ground

truth. In a live simulation we can only attempt

to capture measurements or perceived truth.

One example of this is positions measured

using a GPS where the inaccuracy may be

measured in meters and will vary over time.

The time stamps for data from different live

sources may also need to be adjusted when

data from different sources is merged.

 While a constructive or virtual simulation can

be re-run, you may only be given one, or a

very limited number of opportunities to

capture output data from a live simulation.

One example of this is the firing of a

prototype missile in a test range.

 Live simulations may require wireless data

connections to some of the players. This may

result in less reliable communication lines,

leading to gaps in logged data. Additional

precautions may need to be considered to

address this problem.

In many cases there may be no major differences

between the collection of data from a real life

system for LVC simulation purposes and for other

purposes.

Still, the ability to combine data from several Live-

Virtual-Constructive sources makes the potential of

this data even higher. It allows us to understand a

bigger picture than before, to train in a more

realistic and effective way, and to better analyze the

total impact of new concepts.

Figure 1: LVC Data Logging Challenges.

1.2 The role of the data logger in a simulation

A data logger is typically a software application

that is either built-in into a simulation application or

that is standalone. It may connect to one or more

applications using a network protocol like DIS or

interoperability services, like HLA. A data logger

for HLA or DIS is usually more reusable than a

built-in proprietary data logger but it may be

limited to recording the public data provided in the

FOM or the DIS protocol.

The most common functionality of a data logger

includes:

 Recording of time stamped data from a data

source like HLA or DIS into a file or a

database.

 Playing back all or selected parts of the

recorded data to a data sink of the same type

(HLA or DIS). This may be done at the

original speed, scaled to lower or higher

speed, or using a completely different time-

advance pattern, for example using HLA Time

Management and/or event driven time

advance.

 Support for human inspection of the data in a

user interface.

 Support for automated inspection and analysis

of the data through an API.

 Making the recorded data available in other

formats like databases and plain text formats.

 Managing the timeline, for example by setting

bookmarks or moving the playback time to a

bookmark or a specific time value.

 Filtering the data during recording or

playback.

 Adapting the data during playback, for

example DIS exercise id, DIS entity id or

HLA object instance name.

2. Use Cases for LVC Data Logging

There are many ways to benefit from data logging

in LVC simulations. Some of the more common

applications are described here. The use cases are

based on the experiences from a number of

simulation systems developed within TNO as well

as practical experiences provided by staff at Pitch.

2.1 Simulation for training

Simulation for training is a common application

where data logging is used. One particular class of

training applications is the virtual, man-in-the-loop

simulations, for example for training pilots, drivers,

forward air controllers or straddle carrier operators.

Figure 2: TNO Forward Air Controller simulator.

Data logging in these simulations is mainly used to

record and playback an exercise in real time, where

instructors use VCR type functions to control data

logging and playback.

The characteristics of these simulations are:

 The simulation is typically Virtual.

 It is a real time simulation where HLA Time

Management is not used.

 Data logging is used for simulation data

(ground truth), and sometimes also live voice

or video data.

 The execution is controlled via start, stop,

pause, and resume management messages.

 Simulation applications may join or leave the

simulation execution when they want.

 Real-time replay of the logged data is used for

after action review.

Since these simulations have been around for a

while, the required functionality for recording and

replay is generally well understood.

From a high-level point of view, three major states

can be identified for this kind of simulation.

 Preparation. In this state a training scenario is

prepared and previously recorded data may be

used for the construction of a new scenario.

Common simulator functions in this state are:

create new scenario, edit scenario, delete

scenario, load scenario and save scenario.

Editing a scenario involves many different

functions which will differ per training

application, such as entity placement on a 2D

map, route planning and entity behavior

configuration. When the scenario is started,

the prepared scenario becomes the initial

situation at the start of the scenario execution.

 Execution. In this state the scenario is

executed over time. Simulation data and other

relevant data are recorded for after action

review. It is possible to bookmark certain

events for use in after action review. When the

execution is stopped, the existing situation

may become a new scenario in the preparation

state.

 After Action Review. In this state a previously

recorded exercise can be replayed and

visualized in the original simulators or in 3D

or 2D viewers. It is possible to view the list of

available bookmarks, to jump to a bookmark

or to a certain point in time in the recording. It

is also possible to pause and resume the

replay. When the after action review is

stopped, the existing situation may become a

new scenario in the preparation state.

2.2 Simulation for analysis

There are many different types of analysis models.

Here we have chosen to focus on stochastic

simulation (Monte Carlo [7] simulation). Stochastic

simulation typically involves thousands or more

simulation runs, varying one or more parameters.

The simulation runs can be long lasting (in elapsed

time), and are executed in non-real time. In most

cases these simulations run as-fast-as-possible.

Analysis involves processing and aggregating large

amounts of data that has been recorded over the

various runs. Ad-hoc queries on the recorded data

may be needed to zoom in on certain aspects.

Analysis is usually performed afterwards when all

the data can be aggregated and searched.

Two examples where stochastic simulation is

applied are described in earlier papers [8][9]. In [8]

the effect of dynamic train management is studied,

using small stochastic variations in the train

schedule. In [9] a footprint analysis is performed to

determine the region that a ship can defend against

a missile, using stochastic variations in sensor

behavior.

In both examples a large amount of data is collected

during the simulation execution and transferred to a

dedicated analysis application. Stochastic

simulation also requires more extensive simulation

states to control simulation execution, such as states

for simulation initialization, warm-up, steady state

execution, iterations and shutdown. This is quite

different from the relatively simple simulation

states in the training case.

Figure 3: Study area to analyze dynamic train

management using Monte Carlo simulation [8].

We can summarize the characteristics of a

stochastic simulation as follows:

 The simulation is typically Constructive.

 It is a non-real time simulation where HLA

Time Management is used.

 Data logging is used for simulation data

(ground truth) as well as simulated operational

data, like the Link 16 BOM (perceived truth).

 Execution is controlled via synchronization

points and save/restore points

 All applications need to be present throughout

the simulation execution.

 Replay of certain runs may be possible, but

results may also just be charts such as bar or

line charts of aggregated data

2.3 Simulation for test and evaluation of live

systems

This use case involves connecting real-time

(operational, live) systems to a simulation for test

and evaluation. The idea behind this is to test and

evaluate a system early in the development cycle

and certainly before the system arrives in the target

environment. A simulation can provide, for

example, stimuli or ’ground truth input’ in order to

verify if the resulting behavior of the system is

correct. Alternatively a data logger may be used to

replay previously recorded data to stimulate a

system. The resulting system behavior may be the

transmittal of certain tactical (operational)

messages, which may be fed back in the simulation

for additional stimuli. Thus simulation for test and

evaluation involves simulation data, operational

data and real-time execution.

Analysis involves correlating simulation data with

operational data to verify if the right data was

generated at the right moment where timing of

certain messages may be important. For example,

which Link 16 track corresponds to which

simulation entity? Are the correct tactical messages

generated across all phases of a missile

engagement?

Figure 4: JROADS simulation integrated with live

systems via a tactical data link.

Analysis may be performed on-line (during

simulation execution) or off-line (after simulation

execution). With on-line analysis, both simulation

data and operational data are monitored during the

simulation execution. It is possible to pause the

monitoring in order to look at certain data, while at

the same time the recording of data continues. The

monitoring can be resumed and fast forwarded to

catch up with the ongoing execution, so called

chase play, just like modern hard-disk video

recorders that can record and play a film at the

same time, while jumping back and forth in the

film. Bookmarking may be used to jump to certain

important points that have been marked earlier in

the recorded data.

With off-line analysis the recorded simulation data

and operational data is reviewed after the execution

has finished. Data may be replayed in real time or

faster/slower than real time (n times real time).

Important to note is that the timing of messages that

are replayed can be important or even critical, due

to the correlation between simulation data and

operational data over time. Also, data from external

sources may need to be combined with the recorded

data, such as log files from command and control

systems. Data from external sources can be

provided in different formats (e.g. comma-

separated value file or xml file). An application for

off-line analysis is described in [10].

Again, we can summarize the characteristics of a

simulation for test and evaluation as follows:

 The simulation can be regarded as Live.

 It is a (hard) real-time simulation where HLA

Time Management is not used.

 Data logging is used for simulation data

(ground truth) as well as live/simulated

operational data, like Link 16 (perceived

truth).

 Execution is controlled via start/stop

management messages, monitoring via

pause/resume/jump messages

 Depending on the system, all applications in

the simulation environment need to be present

throughout the simulation execution

 Real time and non-real time replay of data is

used for after action review.

2.4 Federation development

Logged simulation data is highly useful to

minimize time, cost and risk during the

development of simulation software, in particular

when adding HLA or DIS interfaces. The output

data of a simulator can be logged, inspected and

checked against the expected output. Well-known,

correct simulation data can be fed into a simulator

from a data logger to check stability and correct

behavior. You may even exchange logged data

between several simulators before you connect

them for real. An integration leader may apply a

pre-integration methodology where all systems are

required to be tested against a well defined set of

test data before they are allowed to join the full

federation. Data logging for simulator development

is applicable to all the above types of simulation. It

generally shares all of the above requirements but

the requirement to be able to exchange data files is

prominent.

3. Requirements and Challenges for

Data Loggers

The different use cases all lead to a set of

requirements for recording and replay. Ideally

we’re looking for a multipurpose recording and

replay capability that can fulfill all requirements.

This section of the paper lists the requirements and

maps them to the use cases above that are most

relevant.

3.1 Data streams

Requirement 1: The data logger must support

several data streams (HLA, DIS, etc, as required by

the simulation), or be extendable with new data

streams.

Most applicable to: Training, Test and Evaluation

Today’s simulation environments are open and all

kinds of systems can be connected, generating

different types of data. A well known example in

the missile and air defense domain is Link 16.

Another example is voice. Recording should not

just be limited to simulation data.

3.2 Session management

Session management concerns the management of

recording sessions: create a recording session with

the required (DIS, HLA, etc) simulation connection

parameters; destroy a previously created recording

session; open a recording session for replay; close a

previously opened recording session; start, stop,

pause, resume the recording or replay within a

session; jump to bookmark or jump to time within a

session.

Requirement 2: The data logger must be able to

record data streams and store them as a recording

session. Recorded data streams (DIS, HLA, etc.)

must be stored together in a recording session.

Most applicable to: All use cases

Requirement 3: The data logger must be able to

retrieve a recording session and replay all or a

subset of the recorded data streams.

Most applicable to: All use cases

Data streams in a recording session should also be

replayed together. The precise timing of data stream

messages may be important. For example if in data

stream A messages are recorded at time 0, 5, 10, ...,

and in data stream B at time 2, 5, 8, ..., then these

should also be replayed exactly this way. Thus

during replay, data streams in a recording session

must remain synchronized in time.

Requirement 4: The data logger must be able to

replay a data stream in a different format than was

recorded.

This requirement implies that the data logger is

aware of the data being recorded. For example

record a DIS data stream and replay the DIS data

stream as an XML formatted data stream.

Most applicable to: Test and Evaluation

Requirement 5: The data logger must be able to

pause/resume/fast forward/fast backward a replayed

recording session.

Most applicable to: All use cases

Requirement 6: The data logger must support the

filtering of data from a data stream on recording

and on replay.

Most applicable to: All use cases

Requirement 7: The data logger must support the

concurrent recording and replay of a data stream.

Most applicable to: Test and Evaluation,

Federation development

Usually replay happens only when recording has

finished. But in some cases it must be possible to

view and analyze data streams while they are being

recorded. Thus data streams are replayed at the

same time as they are recorded (concurrently). Also

the requirements to pause/resume/fast forward/fast

backward, to jump to a bookmark or jump to a

point in time, and replay in a different format apply

on the replayed data streams. When a replayed data

stream lags behind on the recording, it is called

”chase play”.

The following figure shows the principle.

 Recorder application Analysis application

Recording and
Replay

Execution
Management

Simulation and
Operational data

Control
commands

Simulation and
Operational data

Analysis

Recorder application Analysis application

Recording and
Replay

Execution
Management

Simulation and
Operational data

Control
commands

Simulation and
Operational data

Analysis

Figure 5: Activity diagram for concurrent

recording and replay.

The data streams that come out of the Recording

and Replay activity should not be replayed on the

same DIS exercise or HLA federation where the

data is recorded from. Thus the data streams should

be replayed in a different DIS exercise or HLA

federation, or even in a different format, for

example as XML on a TCP connection.

Requirement 8: The data logger must support the

grouping of recording sessions and support the

addition of meta-data to each group.

Most applicable to: Analysis

With Monte Carlo simulations, each run results in a

recording session. Recording sessions of related

runs (for example where only the seed is different)

should be grouped and have the variation number

and other variable settings added as meta-data.

3.3 Bookmark management

Requirement 9: The data logger must support the

management of bookmarks (create, delete, update

bookmark; retrieve bookmarks).

Most applicable to: All use cases

Requirement 10: The data logger must be able to

jump to a bookmark or jump to a point in time in a

replayed recording session.

Most applicable to: All use cases

When jumping to a certain point in time (say time

T), it may be necessary to scan the data stream

backwards in time to build up a complete picture

for time T. For example, with a DIS data stream the

data logger may need to scan back up to 13 seconds

in order to find all entity state updates for time T.

3.4 Time management

Requirement 11: The data logger must be able to

record data in a real-time simulation (which does

not use HLA Time Management or similar

services).

Most applicable to: Training, Test and Evaluation,

Federation development

Requirement 12: The data logger must be able to

record data in a (real time or non-real time) HLA

time managed simulation.

Most applicable to: Analysis, Federation

Development

Time management concerns the use of HLA Time

Management services when the simulation is time-

managed. With a time-managed simulation a data

logger is usually a time constrained federate in

recording mode and, depending on the federation, a

time regulating federate in replay mode. Recording

and Replay needs to support HLA Time

Management.

Requirement 13: The data logger must be able to

replay a recording session at different speeds (real

time or faster/slower than real time).

Most applicable to: Test and Evaluation

Restrictions may apply for certain data streams in

certain situations. For example, a DIS data stream

may in some cases only be replayed real-time,

otherwise dead-reckoning models in applications

like viewers may not work correctly.

3.5 Ownership management

Requirement 14: The data logger must be able to

transfer ownership of object instances in a certain

data stream on a mode change (between recording

and replay).

Most applicable to: Training

Ownership management concerns a transfer of

ownership of HLA object instances when the mode

changes between recording and replay. In some

situations an ownership transfer is required, for

example when the state of the object instances

provided in replay mode is used as the initial state

for a new simulation execution. The data logger

needs to release ownership and the different

applications that model the object instances must

acquire ownership.

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Recorder application Other application(s)

Recording and
Replay

Divest
ownership

Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay

Simulation

Acquire
ownership

Recorder application Other application(s)

Recording and
Replay

Simulation

Acquire
ownership

Divest
ownership

Figure 6: Ownership transfer on mode change:

 (1) from After Action Review to Execution

 or Preparation (top) and

 (2) from Execution or Preparation to After

 Action Review (bottom).

3.6 Data management

Requirement 15: The data logger must support the

exchange (import/export) of recorded data with

other applications.

Most applicable to: Analysis, Test and Evaluation,

Federation development

For export, there are different options to consider,

for example: raw export (export the data streams as

they were recorded), structured export (export the

data streams to a structured format, e.g. a SQL

database where the schema matches the HLA

FOM).

3.7 Control and embedding

Requirement 16: The data logger must be

able to handle execution management messages that

are received via a data stream.

Most applicable to: Analysis

In some cases execution management messages

(such as HLA synchronization points, HLA

Save/Restore, and user defined simulation

management interactions) need to be interpreted by

the Recording and Replay activity. This can for

example be a certain HLA interaction that identifies

the end of a Monte Carlo simulation run. The

Recording and Replay activity must provide hooks

to handle these execution management messages. A

default hook could implement some default

behavior, like achieving an HLA synchronization

point.

Requirement 17: The data logger must be

embeddable in and completely controllable by

another application, concerning all of the earlier

mentioned requirements.

Most applicable to: Training, Analysis, Test and

Evaluation

This is an important requirement and allows

recording and replay to be integrated with virtually

any simulation application. The following figure

shows an example of embedded control.

Controlled application Controlling application

Recording and
Replay Execution

Management

Simulation and
Operational data

Control
commands

Execution Management messages,
Synchronization points and Save/Restore points

Controlled application Controlling application

Recording and
Replay Execution

Management

Simulation and
Operational data

Control
commands

Execution Management messages,
Synchronization points and Save/Restore points

Figure 7: Activity diagram for recording mode.

In this example the controlling application performs

the activity execution management. It controls the

controlled application (i.e. the data logger) that

performs the activity recording and replay. The

controlling application handles for example the

HLA synchronization points, HLA Save/Restore

and Execution Management messages (such as

start-resume and stop-freeze DIS PDUs in a DIS

exercise) and if needed initiates mode changes on

the controlled application. The controlled

application (i.e. the data logger) does not interpret

any Execution Management messages (these

messages are just recorded as any other data) and

achieves (by definition) any HLA synchronization

or HLA save/restore it is involved in.

Thus, with embedding, recording and replay is

dedicated to performing just this activity, while it is

part of some application.

3.8 Scalability

Requirement 18: For initial testing, the data logger

shall be able to operate on a regular computer

without extensive setup. When used with a full

federation, the data logger must be able to

record/replay many different data streams

concurrently and support long lasting and large

recording sessions with tens of thousands of

recorded events per second.

Most applicable to: All use cases

Note that there are advanced use cases where

several data loggers could be used concurrently, for

optimum scalability, or in different locations to

conserve bandwidth. Merging of the logged data

may introduce additional challenges that are not

covered in this paper.

4. Practical Experiences

This section summarizes our experiences from

extending a COTS data logger with an additional

LVC protocol.

4.1 About Pitch Recorder

Pitch Recorder, a COTS product, is a general

purpose data logger with a rich set of features [11]

targeted at LVC simulations. It provides parallel,

synchronized recording of the following data

streams:

 HLA data for any FOM with support for HLA

1.3, 1516-2000 and 1516-2010 RTIs.

 DIS version 4, 5 and 6 plus experimental

PDUs

 Audio (for example for voice recording).

 User defined data streams, for example

national C2 protocols

In addition to the concept of a data stream, the Pitch

Recorder introduces the concept of channels. For an

HLA data stream it is possible to configure

different channels, for example for land, sea and air

entities as well as fire, detonation and radio. Pitch

Recorder is not locked to any particular FOM and

has been used for military, security, space, and

civilian federations.

Figure 8: Channels in Pitch Recorder

All data streams can be recorded, played back,

filtered, inspected and exported to other programs.

Complete recordings can also be exported to a

package that can be sent by e-mail or other file

transfer methods. Pitch Recorder can be used stand-

alone or be embedded into a solution and externally

controlled by another software application.

One of the more recent features of this product is a

plug-in framework that allows the addition of new

kinds of data streams for recording and replay.

4.2 Scalability Experiences

Pitch Recorder can record to small local databases

for modest data flows. For large federations, high

end COTS databases on dedicated hosts can be used

for sustained logging of tens of thousands updates

per second. Typical performance for Pitch Recorder

in a lab test is more than 25 000 recorded HLA

updates per second on a regular desktop computer.

An interesting scalability experience from a real

training application is the recent Viking 11 exercise

[12]. This exercise was described in ITEC 2011

keynote as the world’s premier comprehensive

exercise, including civilian, military and police

participants. The exercise covered the planning and

execution of a UN mandated Chapter VII Peace

Operation/Crisis Response Operation. On the

civilian side approximately 35 Non-Governmental

Organizations participated. It was based on a

scenario called Bogaland that contains a large

number of challenges for example piracy, irregular

forces, refugees, children in armed conflicts and

reconstruction. Approximately 2500 persons from

31 nations were involved, participating from 9

different sites.

Examples of participating systems were JCATS,

ICC, Sitaware, Exonaut, TYR, ASCOT and VBS2.

The information exchange was based on an HLA

Evolved infrastructure using Pitch pRTI Evolved

version 4.2.5. Data was logged using Pitch

Recorder with a separate database host running

MySQL, saving data to a RAID-5 disk set. More

than 160 hours of exercise was recorded amounting

to more than 210 GB of data. The majority of this

data was position updates. Note that the data rate

varies a lot over time, with a typical “idle rate” of

5000 updates per second. Voice data was also

recorded using a separate Pitch Recorder since

voice was handled in a separate federation.

One conclusion from this exercise is that it is

important to fully understand how to configure the

database manager (in this case MySQL) in order to

guarantee that the data base sessions don’t time out.

Another, more obvious conclusion is the

importance of powerful hardware to avoid overload

during busy periods of the exercise.

4.3 Experiences from adding Link 16 support

As an engineering feasibility demonstration, a new

data stream for Link 16 [5] recording and replay

was added to Pitch Recorder by TNO. Tactical Data

Link traffic like Link 16 is often emulated in

simulation environments. Several protocols and

wrappers are being used to provide the exchange of

Link 16 messages between federates. The Standard

Interface for Multiple Platform Link Evaluation

(SIMPLE) [13] is widely supported and was

selected for the engineering feasibility

demonstration. The Link 16 data stream was added

relatively easily to the Pitch Recorder, given that a

Link 16 software library for receiving and sending

Link 16 messages from/to a SIMPLE network was

already available.

The plug-in framework provides a set of Java

interface classes that a plug-in must implement, for

example for sending and receiving data, and for

providing a property window. Once the plug-in is

constructed and compiled to a jar file, it is just a

matter of dropping the jar file in the Pitch Recorder

plug-in folder.

Figure 9: Screenshot of Pitch Recorder Link 16

recording.

One of the reasons to choose SIMPLE Link 16 as a

first candidate plug-in is to create the ability to

record, replay and analyze DIS/HLA simulation

data in combination with Link 16 tactical data. This

data stream combination is often found in LVC air

and missile defense simulation exercises, like

JPOW (Joint Project Optic Windmill) [14].

The Link 16 plug-in for Pitch Recorder was

successfully tested in the JROADS (Joint Research

On Air Defence Simulation) simulation

environment at TNO. JROADS is an extensive

simulation tool to support air defense research and

CD&E for the Netherlands armed forces. At JPOW,

JROADS has been used for joint experimentation,

analysis, and mission training for many years.

5. Discussion

While generating requirements from the use cases,

a number of challenges became obvious as to how

these requirements should be implemented. This

section summarizes some of them.

5.1 What data do we need to collect?

For many purposes, like after action review or

analysis, there may be a requirement to use many

types of data from the simulation. Some of them

may be exchanged using HLA or DIS during the

execution. Others may be internal variables in

simulators or physical states of hardware. The

challenge is how to collect the later type of data.

Some approaches are to publish that data using

HLA or to introduce a separate data stream for that

data into the same or a different data logger. Using

several data loggers creates problems when re-

synchronizing the data. Sending additional data

using HLA may only be practical for a limited set

of data. Creating a specialized data stream for

internal data from an application means a fair

amount of work. The best approach has to be

decided from case to case.

5.2 Data loggers and data awareness

One of the more difficult questions when designing

a data logger is to what degree a data logger needs

to be aware of the data it handles. Playing back data

is usually more challenging than recording data and

will sometimes require additional functionality in

most participating simulators. Typical examples

include:

 Handling of the life cycle of a simulated

entity. This is handled differently in different

architectures. If the playback of a DIS

recording is paused and no data is sent for an

aircraft for a certain time period, then listeners

may delete that aircraft (unless all systems

implement the freeze PDU). For HLA, a

related problem is that a data logger may send

out data for an aircraft that hasn’t been created

or that has attributes that are owned by another

system.

 Handling of data where certain shared

algorithms have been agreed. One example is

dead reckoning where an aircraft has a certain

speed that participating systems use for

predicting its future position. When such data

is played back at scaled time or even paused

there is a risk that listeners may interpret the

data in an unintended way.

 Handling of data that needs to be adapted. An

example is the DIS exercise identification in a

DIS data stream. The DIS exercise

identification may be different on playback.

Another example is time information. Time

information may be adapted in order to replay

data at another simulation time than it was

recorded.

As can be seen from these examples a data logger

may need to have deeper insights into both the

simulation standard used and particular federation

agreements.

5.3 Exchanging data that has been logged

It is likely that different organizations may want to

use different data logging software. The same

organization may even want to use different

software over time or for different projects.

Therefore, it would be of great value if different

data loggers could exchange data using a

standardized file format. While the internal format

of a data logger may be optimized for fast search

and execution, a data interchange format would be

optimized for generality.

One strongly related topic is a long-term data

archival format that ideally would be the same as a

standardized data interchange format.

6. Conclusions

This paper has presented a number of use cases,

requirements and challenges for data logging in an

LVC environment. Although the different use cases

all have their own focus areas with respect to

logging, it should be possible to provide a solution

that fulfils all or most requirements. Such a solution

must be open and extendable, for example by using

a plug-in framework such as in Pitch Recorder. An

initial demonstrator based on the Pitch Recorder

plug-in framework has been described in this paper

and has shown that a new data stream such as

SIMPLE/Link 16 can relatively easily be added to

the Pitch Recorder.

One important conclusion is the need to record

several types of data in parallel to fully capture the

exercise in particular in LVC and training

applications. This may include both standardized

data streams, like HLA, DIS and voice as well as

proprietary data.

Future work on data logging and playback, in

particular work related to debrief, should not only

consider the requirements listed in paper, but also

look at the work of the SISO Distributed Debrief

Control Protocol (DDCP) Study Group [15]. The

aim of the DDCP Study Group is to evaluate

industry and government interest in developing a

distributed debrief control protocol standard. Some

of the requirements in this paper are related to this

work.

References

[1] A Henninger, et. al. “Live Virtual

Constructive Architecture Roadmap

(LVCAR) Final Report”, US DoD,

September 2008.

[2] IEEE: "IEEE 1516-2010, High Level

Architecture (HLA)", www.ieee.org, August

2010.

[3] SISO, “Real-time Platform Reference

Federation Object Model 2.0 ”, SISO-STD-

001 SISO, draft 17.

[4] IEEE: "IEEE 1278, Distributed Interactive

Simulation (DIS)", www.ieee.org.

[5] Link 16 is defined as one of the digital

services of the JTIDS / MIDS in NATO's

Standardization Agreement STANAG 5516.

MIL-STD-6016 is the related United States

Department of Defense Link 16 MIL-STD.

[6] “TENA - The Test and Training Enabling

Architecture, Architecture Reference

Document”, https://www.tena-

sda.org/public_docmanager/userdocuments/

TENA ARCHITECTURE

REFERENCE/TENA Architecture

Reference Document 2002.pdf.

[7] Metropolis, N. and Ulam, S. "The Monte

Carlo Method." J. Amer. Stat. Assoc. 44,

335-341, 1949.

[8] 08E-SIW-003: Application of HLA in the

Optimization of Rail Transport. Euro SIW

2008. T.W. van den Berg et al.

[9] 09S-SIW-008: Execution Management

Solutions for Geographically Distributed

Simulations. Spring SIW 2009. T.W. van

den Berg et al.

[10] 11E-SIW-010: Generic Reconstruction and

Analysis for simulations or live exercises.

Euro SIW 2011. R. Witberg et al.

[11] Pitch Recorder web page,

http://www.pitch.se/products/recorder

[12] Viking 11,

http://www.forsvarsmakten.se/en/About-the-

Armed-Forces/Exercises/Completed-

exercises-and-events/VIKING-11/

[13] Standard Interface for Multiple Platform

Link Evaluation (SIMPLE). STANAG 5602

(Edition 2). http://nsa.nato.int.

http://en.wikipedia.org/wiki/JTIDS
http://en.wikipedia.org/wiki/Multifunctional_Information_Distribution_System
http://en.wikipedia.org/wiki/STANAG
http://en.wikipedia.org/wiki/MIL-STD-6016
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/MIL-STD

[14] Joint Project Optic Windmill,

http://www.globalsecurity.org/military/ops/o

ptic-windmill.htm.

[15] SISO Distributed Debrief Control Protocol

(DDCP) Study Group,

http://www.sisostds.org/StandardsActivities/

StudyGroups/DDCPSGDistributedDebriefC

ontrolProtocol.aspx.

Author Biographies

BJÖRN MÖLLER is the vice president and co-

founder of Pitch, the leading supplier of tools for

HLA 1516 and HLA 1.3. He leads the strategic

development of Pitch HLA products. He serves on

several HLA standards and working groups and has

a wide international contact network in simulation

interoperability. He has twenty years of experience

in high-tech R&D companies, with an international

profile in areas such as modeling and simulation,

artificial intelligence and Web-based collaboration.

Björn Möller holds an M.Sc. in Computer Science

and Technology after studies at Linköping

University, Sweden, and Imperial College, London.

He is currently serving as the vice chairman of the

SISO HLA Evolved Product Support Group.

FREDRIK ANTELIUS is a Lead Developer at

Pitch and is a major contributor to several

commercial HLA products. He holds an M.Sc. in

Computer Science and Technology from Linköping

University, Sweden.

TOM VAN DEN BERG is scientist in the

Modeling, Simulation and Gaming department at

TNO, The Netherlands. He holds an M.Sc. degree

in Mathematics and Computing Science from Delft

Technical University. His research area includes

simulation systems engineering, distributed

simulation architectures and concept development

& experimentation.

ROGER JANSEN is a member of the scientific

staff in the Modeling, Simulation and Gaming

department at TNO, The Netherlands. He holds an

M.Sc. degree in Computing Science and a Master

of Technological Design (MTD) degree in Software

Technology, both from Eindhoven University of

Technology, The Netherlands. He works in the field

of distributed simulation and his research interests

include distributed computing and simulation

interoperability.

